Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In this talk I compare the normative concept of probability at the heart of QBism with the notion of probability implied by the use of Solomonoff induction in Markus Mueller's preprint arXiv:1712.01816.
Algorithmic information theory (AIT) delivers an objective quantification of simplicity-qua-compressibility,that was employed by Solomonoff (1964) to specify a gold standard of inductive inference. Or so runs the conventional account,that I will challenge in my talk.
In this talk we describe a general procedure for associating a minimal informationally-complete quantum measurement (or MIC) with a probabilistic representation of quantum theory. Towards this, we make use of the idea that the Born Rule is a consistency criterion among subjectively assigned probabilities rather than a tool to set purely physically mandated probabilities.
In his famous thought experiment, Wigner assigns an entangled state to the composite quantum system made up of Wigner's friend and her observed system. While the two of them have different accounts of the process, each Wigner and his friend can in principle verify his/her respective state assignments by performing an appropriate measurement. As manifested through a click in a detector or a specific position of the pointer, the outcomes of these measurements can be regarded as reflecting directly observable "facts".
A central fact in computer science is that there are universal machines, that is machines that can run any other program. Recently, a somewhat similar notion of universality has been discovered in physics, by which some spin models can simulate all other models. In this work we shed light on the relation between the two concepts of universality
Following Stefan Wolf’s talk, we address the doubts expressed on fundamental space-time causality. Usually it is assumed that causal structures represent a definite partial ordering of events. By relaxing that notion one risks problems of logical nature. Yet, as we show, there exists a logically consistent world beyond the causal, even in the classical realm where quantum theory is not invoked. We explore the classical correlations within and the computational limits of that world.