Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Dimer models have long been a fruitful playground for understanding topological physics. We introduce a new class -- termed Majorana-dimer models -- where the dimers represent pairs of Majorana modes. We find that the simplest examples of such systems realize an intriguing, intrinsically fermionic phase of matter that can be viewed as the product of a chiral Ising theory, which hosts deconfined non-Abelian Ising quasiparticles, and a topological (p − ip) superconductor.
I will review recent results from applying the conformal bootstrap to 3D CFTs, including precise determinations of critical exponents and in the 3D Ising and O(N) vector models, new constraints on 3D Gross-Neveu models, and general bounds on correlation function coefficients of currents and stress tensors.
In this talk, we examine the behavior of the retarded Green’s function in theories with Lifshitz scaling symmetry, both through dual gravitational models and a direct field theory approach. In contrast with the case of a relativistic CFT, where the Green’s function is fixed (up to normalization) by symmetry, the generic Lifshitz Green’s function can a priori depend on an arbitrary function Nevertheless, we demonstrate that the imaginary part of the retarded Green’s function (i.e.
A hydrodynamic theory of transport in quantum mechanically phase-disordered superconductors is possible when supercurrent relaxation can be treated as a slow process. We obtain general results for the frequency-dependent conductivity of such a regime. With time-reversal invariance, the conductivity is characterized by a Drude-like peak, with width given by the supercurrent relaxation rate. Using the memory matrix formalism, we obtain a formula for this width (and hence also the dc resistivity) when the supercurrent is relaxed by short range Coulomb interactions.