Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In the classical world of Newton and Laplace, fundamental physics and thermodynamics do not blend well: the former puts forward a picture of nature where states are pure and processes are fundamentally reversible, while the latter deals with scenarios where states are mixed and processes are irreversible. Many attempts have been made at reconciling the two paradigms, but ultimately the source of all troubles remains: if every particle possesses a definite position and a definite velocity, why should experimental data depend on the expectations of agents who have only partial information?
In QBism, a quantum state represents an agent's personal degrees of belief regarding the consequences of her actions on any part of her external world. The quantum formalism provides consistency criteria that enable the agent to make better decisions. QBism thus gives a central role to the agent, or user of the theory, and explicitly rejects the ontological model framework introduced by Harrigan and Spekkens. This talk addresses the status of agents and the notion of locality in QBism. Our definition of locality is independent of the assumption of an ontological model.
One of the most deeply rooted concepts in science is causality: the idea that events in the present are caused by events in the past and, in turn, act as causes for what happens in the future. If an event A is a cause of an effect B, then B cannot be a cause of A.
In these lectures, we will study the bosonic theory of higher-spin gravity in four dimensions. After discussing the reasons for interest in the theory, we will focus on the equations of motion and their content. We will aim to construct the equations from the ground up in a motivated way. The logical order will differ somewhat from standard introductions. As preliminaries, we will discuss the geometry of spinors and twistors in (anti) de Sitter space, along with various viewpoints on free massless fields with arbitrary spin.
A classical Einstein-Rosen bridge changes the topology of spacetime,allowing (for example) electric field lines to penetrate it. It has recently been suggested that in the bulk of a theory of quantum gravity, the quantum entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the quanta, or a “quantum wormhole”. For this “ER=EPR” correspondence to make sense it then seems necessary for a quantum wormhole to allow (for example) electric field lines to penetrate it.
I propose a quantum gravity model in which the fundamental degrees of freedom are pure information bits for both discrete space-time points and links connecting them. The Hamiltonian is a very simple network model consisting of a ferromagnetic Ising model for space-time vertices and an antiferromagnetic Ising model for the links. As a result of the frustration arising between these two terms, the ground state self-organizes as a new type of low-clustering graph with finite Hausdorff dimension.
The known basic building blocks of matter, the quarks and leptons, come in three generations or flavors.
The masses and interactions of the different flavors show a very hierarchical structure and the origin of these hierarchies remains an unsolved mystery of particle physics. The same hierarchies lead to a very high sensitivity of flavor changing processes to new undiscovered particles even outside the reach of direct searches at particle colliders.
Check back for details on the next lecture in Perimeter's Public Lectures Series