Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
We show how the extended thermodynamics of hyperbolic black holes in AdS describes features of quantum information measures in quantum field theory, and discuss prospects for making further connections. In particular, the second law of thermodynamics is seen in this context to map to the generalized Zamolodchikov c-theorem, connecting these two firmly for the first time. Some projects for getting further lessons and perhaps new tools from these connections (perhaps using holographic heat engines) are outlined.
Recently, a new formulation of quantum mechanics was suggested which is based on the evolution of classical particles, provided with a sign, rather than standard wave functions. This allows several advantages over other approaches: from a theoretical perspective, it offers a more intuitive framework while, from a numerical point of view, it allows the simulation of complex systems with relatively small computational resources. In this talk, I will first go through the tenets of this new approach.
Quantum decay of false vacuum states via the nucleation of bubbles may
have played an important role in the early history of our Universe. For
example, in multiverse models that utilize false vacuum eternal
inflation, the Big Bang of our observable Universe corresponds to one of
these bubble nucleation events. Further, our observable Universe may
have undergone a series of symmetry-breaking first-order phase
transitions as it cooled, which may have produced a remnant background
of gravitational waves.
In this talk I will set out two new contributions to the study of operational tasks in a relativistic quantum setting. First, I will present a generalisation of the task known as ‘summoning,’ in which an unknown quantum state is supplied to an agent and must be returned at a specified point when a corresponding call is made. I will show that when this task is generalised to allow for more than one call to be made, an apparent paradox arises: the extra freedom makes it strictly harder to complete the task.
Check back for details on the next lecture in Perimeter's Public Lectures Series