Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Tuesday Feb 18, 2014
Speaker(s): 

The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (representing knowledge, information, or belief) or an ontic state (a direct reflection of reality)? In the ontological models framework, quantum states correspond to probability measures over more fundamental states of reality. The quantum state is then ontic if every pair of pure states corresponds to a pair of measures that do not overlap, and is otherwise epistemic.

Collection/Series: 
Scientific Areas: 

 

Tuesday Feb 18, 2014

Motivated by the cluster structure of two-loop scattering amplitudes in N = 4 Yang-Mills theory we define cluster polylogarithm functions. We find that all such functions of weight 4 are made up of a single simple building block associated to the A2 cluster algebra. Adding the requirement of locality on generalized Stasheff polytopes, we find that these A2 building blocks arrange themselves to form a unique function associated to the A3 cluster algebra.

Collection/Series: 
Scientific Areas: 

 

Friday Feb 14, 2014
Speaker(s): 

Statistical mechanics is the framework that connects thermodynamics to the microscopic world. It hinges on the assumption of equilibration; when equilibration fails, so does much of our understanding. In isolated quantum systems, this breakdown is captured by the phenomenon known as many-body localization. This breakdown manifests in a variety of ways, as elucidated by much recent theoretical and numerical work.

Collection/Series: 

Pages