Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The role of measurement induced disturbance in weak measurements is of central importance for the interpretation of the weak value. Uncontrolled disturbance can interfere with the postselection process and make the weak value dependent on the details of the measurement process. Here we develop the concept of a generalized weak measurement for classical and quantum mechanics. The two cases appear remarkably similar, but we point out some important differences. A priori it is not clear what the correct notion of disturbance should be in the context of weak measurements.
We construct a model which realizes a (3+1)-dimensional symmetry-protected topological phase of bosons with U(1) charge conservation and time reversal symmetry, envisioned by A. Vishwanath and T. Senthil [PRX 4 011016]. Our model works by introducing an additional spin degree of freedom, and binding its hedgehogs to a species of charged bosons. We study the model using Monte Carlo and determine its bulk phase diagram; the phase where the bound states of hedgehogs and charges condense is the topological phase, and we demonstrate this by observing a Witten effect.
In this talk I will explain how to compute three-point functions of N=4 SYM theory in the planar limit for tree level and one-loop in perturbation theory. First I will recall how to formulate the problem of computing the three-point function of operators with determined R-charges in the language of integrable spin chains. In the su(2) sector, the tree-level three point function can be obtained in terms of determinants, whose large R-charge limit can be taken explicitly. Then I will report a systematic method to compute the su(2) three point function at higher loops.
I will review applications of the muon as a probe for new phenomena. Topics to be discussed include the free muon decay and the determination of the Fermi constant; the anomalous magnetic moment of the muon; and searches for lepton flavor violation such as mu->e+gamma, mu->3e, and the muon-electron conversion, with special emphasis on the modification of the muon decay by the atomic binding.
We investigate large-scale structure formation of collisionless dark matter in the phase space description based on the Vlasov equation whose nonlinearity is induced solely by gravitational interaction according to the Poisson equation. Determining the time-evolution of density and velocity demands solving the full Vlasov hierarchy for the cumulants of the distribution function.
Check back for details on the next lecture in Perimeter's Public Lectures Series