Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Supersymmetric gauge theory computes a very special class of (generalized) polylogarithm functions known as scattering amplitudes that have remarkable mathematical properties. In particular, there is a rich connection between these amplitudes and the G(4,n) Grassmannian cluster algebra. To explain this connection I will review some basic facts about the Hopf algebra of polylogarithms and cluster Poisson varieties. I will then define cluster polylogarithm functions which roughly speaking are polylogarithm functions whose arguments are cluster X-coordinates of some cluster algebra A.
Identifying the nature of dark matter is one of the most challenging problems in physics. There is a general consensus that dark matter is a weakly interacting particle and predominantly cold, yet the Cold Dark Matter (CDM) hypothesis remains to be verified. I will show that next cosmological surveys could play a leading role in understanding the dark matter microphysics.
I will give an overview of the algebro-geometric approach to Feynman integral in perturbative quantum field theory and the occurrence of motives and periods in parametric Feynman integrals in momentum space, focusing on joint work with Paolo Aluffi.
Exact WKB analysis, developed by Voros et.al., is an effective method for the global study of differential equations (containing a large parameter) defined on a complex domain. In the first and second lecture I'll give an introduction to exact WKB analysis, and recall some basic facts about WKB solutions, Borel resummation, Stokes graphs etc.
I'll discuss some recent results, motivated by the black-hole firewall paradox and the AdS/CFT correspondence, about the quantum circuit complexity of preparing certain entangled states and implementing certain unitary transformations.
In 2003 Witten introduced twistor string theory as a novel description of the scattering matrix of the maximally supersymmetric Yang-Mills theory in four dimensions. In these lectures I will give an introduction to the developments that have led to new formulations, also based on Riemann surfaces, of a large variety of theories, with and without supersymmetry, in arbitrary space-time dimensions.
Supersymmetric gauge theory computes a very special class of (generalized) polylogarithm functions known as scattering amplitudes that have remarkable mathematical properties. In particular, there is a rich connection between these amplitudes and the G(4,n) Grassmannian cluster algebra. To explain this connection I will review some basic facts about the Hopf algebra of polylogarithms and cluster Poisson varieties. I will then define cluster polylogarithm functions which roughly speaking are polylogarithm functions whose arguments are cluster X-coordinates of some cluster algebra A.
In this talk we will discuss the relation between the incompatibility of quantum measurements and quantum nonlocality. We show that any set of measurements that is not jointly measurable (i.e. incompatible) can be used for demonstrating EPR steering, a form of quantum nonlocality. This implies that EPR steering and (non) joint measurability can be viewed as equivalent. Moreover, we discuss the connection between Bell nonlocality and joint measurability, and give evidence that both notions are inequivalent.
Parafermions are the simplest generalizations of Majorana fermions that realize topological order. We propose a less restrictive notion of topological order in 1D open chains, which generalizes the seminal work by Fendley [J. Stat. Mech., P11020 (2012)]. The first essential property is that the groundstates are mutually indistinguishable by local, symmetric probes, and the second is a generalized notion of zero edge modes which cyclically permute the groundstates.
Check back for details on the next lecture in Perimeter's Public Lectures Series