Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Tuesday May 06, 2014
Speaker(s): 

We review the formalism of matrix product states and one of its recent generalisations which allows to variationally determine the dispersion relation of elementary excitations in generic one-dimensional quantum spin chains. These elementary excitations dominate the low energy effective behaviour of the system. We discuss recent work where we show how we can also describe the effective interaction between these excitations – as mediated by the strongly correlated ground state – and how we can extract the corresponding S matrix.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 06, 2014
Speaker(s): 

There is a close connection between Symmetry Protected Topological Phases and anomalies: a surface of an SPT phase typically has a global symmetry with a nonvanishing 't Hooft anomaly which is canceled by the anomaly inflow from the bulk. This observation together with the known results about the classification of SPT phases suggest that anomalies are much more ubiquitous than thought previously and do not require chiral fermions We elucidate the physical mechanism of anomalies and give examples of bosonic theories with 't Hooft anomalies in various dimensions.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 06, 2014
Speaker(s): 

I will describe Connes approach to the standard model based on spectral noncommutative geometry with particular emphasis on the symmetries. The model poses constraints which are satisfied by the standard model group, and does not leave much room for other possibilities. There is however a possibility for a larger symmetry (the ``grand algebra'') which may also be instrumental to obtain the correct mass of the Higgs.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 06, 2014
Speaker(s): 

This talk will describe the Quasi-Steady State Cosmology proposed in 1993 by Fred Hoyle, Geoffrey Burbidge and Jayant Narlikar. Starting with the motivation for this exercise, a formal field theoretic framework inspired by Mach’s principle is shown to lead to this model. The model is a generalization of the classical steady state model in the sense that it is driven by a scalar field which causes creation in explosive form. Such ‘minicreation events’ lead to a universe with a long term de Sitter expansion superposed with oscillations of shorter time scales.

Collection/Series: 
Scientific Areas: 

 

Friday May 02, 2014

Canadian glass artist and Renaissance man, John Paul Robinson, explores the mythic potential of science. Explaining that, “This is the idea that scientific discovery is changing our mythology by changing our understanding of the world and our place in it.” Backed with a firm understanding of the science he references, his sculptures poetically interpret such theoretical phenomena as wave particles, string mathematics and black holes.

Collection/Series: 

 

Friday May 02, 2014
Speaker(s): 

Consider discrete physics with a minimal time step taken to be
tau. A time series of positions q,q',q'', ... has two classical
observables: position (q) and velocity (q'-q)/tau. They do not commute,
for observing position does not force the clock to tick, but observing
velocity does force the clock to tick. Thus if VQ denotes first observe
position, then observe velocity and QV denotes first observe velocity,
then observe position, we have
VQ: (q'-q)q/tau
QV: q'(q'-q)/tau

Collection/Series: 
Scientific Areas: 

 

Thursday May 01, 2014
Speaker(s): 

Tb2Ti2O7 was one of the first pyrochlore magnets to be studied as a candidate for a spin liquid or cooperative paramagnet, and its ground state has remained enigmatic for fifteen years. Recent time-of-flight neutron scattering studies have shown that it enters a glassy Spin Ice ground state, characterized by frozen short range order over about 8 conventional unit cells, and the formation of a ~ 0.08 meV gap in its spin excitation spectrum at the appropriate quasi-Bragg wave vectors.

 

Thursday May 01, 2014
Speaker(s): 

Superconducting qubits based on Josephson junctions and resonators are presently leading candidates for the implementation of quantum computing. These systems couple strongly to their environment, which often makes preservation of coherence challenging. This strong coupling can be turned into an advantage: it enables the investigation of noise and loss at low temperatures. I will discuss two topics. The first topic is the use of superconducting flux qubits to measure magnetic flux noise. The second topic is the measurement of microwave loss in amorphous dielectric materials.

 

Thursday May 01, 2014
Speaker(s): 

Topological crystalline insulators in IV-VI compounds host novel topological surface states, that at low energy, consist of multi-valley massless Dirac fermions. We show that strain generically acts as an effective gauge field on these Dirac fermion surface states and creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict this is naturally realized in IV-VI semiconductor heterostructures due to the spontaneous formation of a misfit dislocation array at the interface, where the zero-energy Landau orbitals form a nearly flat band.

 

Thursday May 01, 2014
Speaker(s): 

Beta-detected nuclear spin relaxation of 8Li+ has been used to study important problems in polymer physics. In the first case we probe the depth dependence of molecular dynamics in high- and low-molecular-weight deuterated polystyrene (PS-d8). The average nuclear spin-lattice relaxation rate, 1/T1 avg, is a measure of the spectral density of the polymer dynamics at the Larmor frequency (41MHz at 6.55Tesla).

Pages