Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The Kerr metric of vacuum general relativity is expected to describe astrophysical black holes. Boson stars, on the other hand, are one of the simplest gravitating solitons, suggested as astrophysical compact objects, black holes mimickers and as dark matter candidates. Kerr black holes with scalar hair, found in [1], continuously interpolate between these two types of, per se, physically interesting solutions. I will describe the construction of these solutions and discuss theoretical, astrophysical and high energy physics aspects and challenges for Kerr black holes with scalar hair.
Marcia Barbosa,
Universidade Federal do Rio Grande do Sul
Water Stress:
Seeking Solutions in the
Unusual Properties of Water
Perimeter Institute Public Lecture
WEDNESDAY, March 4 at 7:00 pm
Mike Lazaridis Theatre of Ideas
Perimeter Institute
31 Caroline St. N., Waterloo
We study the separability of quantum states in bosonic system. Our main tool here is the "separability witnesses", and a connection between "separability witnesses" and a new kind of positivity of matrices--- "Power Positive Matrices" is drawn. Such connection is employed to demonstrate that multi-qubit quantum states with Dicke states being its eigenvectors is separable if and only if two related Hankel matrices are positive semidefinite.
We investigate through non-equilibrium molecular dynamic simulations the flow of anomalous
fluids inside rigid nanotubes. Our results reveal an anomalous increase of the overall mass flux
for nanotubes with sufficiently smaller radii. This is explained in terms of a transition from a
single-file type of flow to the movement of an ordered-like fluid as the nanotube radius increases.
The occurrence of a global minimum in the mass flux at this transition reflects the competition
The remnant accretion disk formed in binaries involving neutron stars and/or black holes is a source of non-relativistic ejecta. This 'disk wind' is launched on a thermal and/or viscous timescale, and can provide an amount of material comparable to that in the dynamical ejecta. I will present recent work aimed at characterizing