Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We derive in the framework of soft collinear effective field theory (SCET) a Lagrangian describing the t-channel exchange of Glauber quarks, which are incorporated through fermionic potential operators in the effective theory. The Wilson line structure of the operators, which is derived from matching calculations and the symmetries of the effective theory, describe additional soft and collinear emissions from a fermionic t-channel exchange in the forward scattering limit to all orders.
Many-body entanglement can lead to exotic phases of matter beyond conventional symmetry breaking paradigm. Those exotic phases may contain fractionalized quasiparticles and emergent gauge fields. In this talk, I will focus on a wide class of long-range entangled phases—quantum spin liquid. In quantum spin liquids, the spins are entangled in some intricate fashion giving rise to interesting physics such as emergent topological field theory and QED3 theory. I will show in detail how such exotic physics can emerge in simple spin systems.
The notion of Positive Representations is a new research program devoted to the representation theory of split real quantum groups, initiated in a joint work with Igor Frenkel. It is a generalization of the special class of representations considered by J. Teschner for Uq(sl(2,R)) in Liouville theory, where it exhibits a strong parallel to the finite-dimensional representation theory of compact quantum groups, but at the same time also serves some new properties that are not available in the compact case.
I will discuss some results on double loop groups that point to geometric phenomena about double affine flag varieties and double affine Grassmannian. One result of this study is a definition of double affine Kazhdan-Lusztig polynomials.
It is commonly believed that quantum information is not lost in a black hole. Instead, it is encoded into non-local degrees of freedom in some clever way; like a quantum error-correcting code. In this talk, I will discuss how one may resolve some paradoxes in quantum gravity by using the theory of quantum error-correction. First, I will introduce a simple toy model of the AdS/CFT correspondence based on tensor networks and demonstrate that the correspondence between the AdS gravity and CFT is indeed a realization of quantum codes.
For a family of finite rate stabilizer codes, one can define two distinct error correction thresholds: the usual "block" threshold for the entire code, and the single-qubit threshold, where we only care about the stability of a single encoded qubit corresponding to a randomly chosen conjugate pair of logical X and Z operators. Our main result is that in the case of erasures, for hyperbolic surface codes related to a {p,q} tiling of the hyperbolic plane, it is the latter threshold that coincides exactly with the infinite-graph edge percolation transition. I will also
General relativity taught us that space time is dynamical and quantum theory posits that dynamical objects are quantum. Hence the Newtonian notion of space time as a passive stage where physics takes place needs to be replaced by a notion of quantum space time which is interacting with all other quantum matter fields.
Check back for details on the next lecture in Perimeter's Public Lectures Series