Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
One dimensional symmetry protected topological (SPT) phases are gapped phases of matter whose edges are degenerate if the Hamiltonian respects a particular symmetry. With their interacting classification having been understood since 2010, we would like to further our understanding by addressing the following two questions: (1) Is there a unified way of understanding some of the exactly soluble models for 1D SPTs? And (2) if we are given two arbitrary SPTs, can we predict the structure of the phase transition between them?
I enumerate the cases in 2d CFT when the modular hamiltonian (log of the reduced density matrix) may be written as an appropriate integral over the energy-momentum tensor times a local weight. This includes known examples as well as new time-dependent ones. In all these cases the entanglement spectrum is that of an appropriate boundary CFT. I point out the obstruction to the existence of such a result for more complicated bipartitions of the space. This is joint work with Erik Tonni