Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Tuesday Jun 03, 2014
Speaker(s): 

This talk will try to highlight some basic problems connected with conclusions uncritically drawn from well known works. These include: 1. The Schwarzschild solution 2. The formation of black holes by gravitational collapse 3. The no hair theorem 4. The principle of equivalence in the very early universe.

Collection/Series: 
Scientific Areas: 

 

Friday May 30, 2014
Speaker(s): 

We consider a closed system where the parameter controlling a quantum phase transition is promoted to a dynamical field interacting with the quantum critical theory. In the case that the field has an energy extensive in the volume we can treat its evolution classically. We find that the field can become trapped near the phase transition point due to its interactions with the degrees of freedom of the quantum critical theory. The trapping/untrapping transition can be understood using Kibble-Zurek scaling arguments.

 

Friday May 30, 2014
Speaker(s): 

We will first review the rich variety of universality classes of membranes and the various models developed to describe their mechanical properties. We will then discuss the recent applications of the non-perturbative renormalization group to these models aimed at improving the understanding of the membranes' phase-space beyond the epsilon-expansion. Finally, we will comment on the implications of these results on various physical systems.

 

Friday May 30, 2014
Speaker(s): 

To the best of our knowledge, the fundamental laws of physics are Lorentz invariant. This means that condensed matter systems at finite density still display full Lorentz symmetry: it is just spontaneously broken (i.e. by state considered) and thus non-linearly realized. This simple observation allows to derive exact results about the spectrum of theories at finite charge density and suggests to classify condensed matter systems according to all the inequivalent ways in which boosts can be spontaneously broken.

 

Thursday May 29, 2014
Speaker(s): 

I will describe the relationship between radiated energy and entanglement entropy of massless fields at future null infinity (the "Page curve") in two-dimensional models of black hole evaporation. ‎I will use this connection to derive a general feature of any unitary-preserving evaporation scenario: the Bondi mass of the hole must be non-monotonic. Time permitting, I will comment on time scales in such scenarios.

Collection/Series: 
Scientific Areas: 

 

Thursday May 29, 2014
Speaker(s): 

Space-time symmetries are a crucial ingredient of any theoretical model in physics. Unlike internal symmetries, which may or may not be gauged and/or spontaneously broken, space-time symmetries do not admit any ambiguity: they are gauged by gravity, and any conceivable physical system (other than the vacuum) is bound to break at least some of them.

 

Thursday May 29, 2014
Speaker(s): 

Vortex lines are a distinctive feature of superfluids and are characterized by a very peculiar dynamics. In this talk, I will first discuss the behavior of vortex lines in a non-relativistic superfluids in the incompressible limit. I will then introduce an effective theory of vortex lines coupled to sound which applies to relativistic superfluids. I will conclude by briefly discussing the similarities between the effective theory for vortex lines and non-relativistic General Relativity.

 

Thursday May 29, 2014
Speaker(s): 

Modern materials abound in systems to which the quasiparticle picture does not apply, and developing their theoretical description remains an important challenge in condensed matter physics. I will describe recent progress in understanding the dynamics of two systems without quasiparticles: (i) ultracold atoms in optical lattices, and (ii) the nematic quantum critical point of metals with applications to the `strange metal’ found in the high temperature superconductors. A combination of field-theoretic, holographic, and numerical methods will be used.

 

Wednesday May 28, 2014
Speaker(s): 

Brian Swingle obtained his PhD from MIT in 2011 and then moved to Harvard, where he is currently a Simons Fellow in condensed matter physics. Swingle is interested in the physics of quantum matter, and especially in the interface between condensed matter physics, quantum information science, and gravity and holography.

Pages