Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The Hubble Space Telescope has completely revolutionized our understanding of the universe, and has become a beloved icon of popular culture. As revolutionary as Hubble has been, we have pushed it to its scientific limits in many ways. Hubble’s successor, the James Webb Space Telescope, has been in the works for almost two decades and is scheduled to launch in late 2018. It will be 100 times more powerful than Hubble. In her Perimeter Public Lecture, Dr.
By a celebrated theorem of Jacob Lurie, an extended TQFT is entirely determined by what it assigns to a point. It is natural to ask whether this theorem applies to TQFTs of physical interest. And, if yes, what do these theories assign to a point? In this talk, I will propose an answer for the case of 3-dimensional Chern-Simons theory. I will then
In this talk I will discuss how we might go about about performing a Bell experiment in which humans are used to decide the settings at each end. The radical possibility we wish to investigate is that, when humans are used to decide the settings (rather than various types of random number generators), we might then expect to see a violation of Quantum Theory in agreement with the relevant Bell inequality. Such a result, while very unlikely, would be tremendously significant for our understanding of the world (and I will discuss some interpretations).
I will discuss a new class of supersymmetric Wilson loop operators in pure N=2 Yang-Mills-Chern-Simons theory. These Wilson loops preserve one supercharge on-shell and wrap arbitrary Legendrian knots in the standard contact R^3. I will also explain a relation, motivated by a global picture of contact three-manifolds, between these loop operators and chiral current algebra in two dimensions. This talk is directly related to, but independent of, my preceding Friday talk in the Mathematical Physics seminar.