Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Frustrated magnets provide a fertile ground for discovering exotic states of matter, such as those with topologically non-trivial properties. Motivated by several near-ideal material realizations, we focus on aspects of the two-dimensional kagome antiferromagnet. I present two of our works in this area both involving the spin-1/2 XXZ antiferromagnetic Heisenberg model. First, guided by a previous field theoretical study, we explore the XY limit ($J_z=0$) for the case of 2/3 magnetization (i.e.
Perimeter Scholars International 2017 Convocation Ceremony
Many model quantum spin systems have been proposed to realize critical points or phases described by 2+1 dimensional conformal gauge theories. On a torus of size L and modular parameter τ, the energy levels of such gauge theories equal (1/L) times universal functions of τ. We compute the universal spectrum of QED3, a U(1) gauge theory with Nf two-component massless Dirac fermions, in the large-Nf limit.
I will discuss the possibilities to mimic black hole physics in fluid flows. The starting point is an analogy discovered by Unruh between the propagation of sound in a flowing fluid and waves around a black hole. In these analog setups, it is possible to test various black hole effects, and challenge their robustness. In a recent water wave experiment, we have shown how to exploit this analogy to observe superradiant scattering, that is, the amplification of waves by extraction of angular momentum from a rotating flow.
Join the original Captain Kirk, William Shatner, as he interviews renowned scie
Check back for details on the next lecture in Perimeter's Public Lectures Series