Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We study chiral algebras associated with Argyres-Douglas theories engineered from M5 brane. For the theory engineered using 6d (2,0) type J theory on a sphere with a single irregular singularity (without mass parameter), its chiral algebra is the minimal model of W algebra of JJ type. For the theory engineered using an irregular singularity and a regular full singularity, its chiral algebra is the affine Kac-Moody algebra of JJ type.
Lack of fine tuning in effective field theory does not ensure that a particular scenario is natural or even realizable in a UV complete theory of quantum gravity. Large field axion inflation appears natural from the effective field theory perspective, but I argue that it is tuned from a quantum gravity perspective. The argument is based on the Weak Gravity Conjecture (WGC), a conjectural universal feature of quantum gravity that is present in all known string theory examples.
It has long been wondered to what extent the observable properties of an inhomogeneous universe will be measurably different from a corresponding FLRW model. Here, we use tools from numerical relativity to study the properties of photons traversing an inhomogeneous universe. We evolve the full, unconstrained Einstein field equations for a spacetime containing dust, with a spectrum of long-wavelength density perturbations similar to the observed one.
I will talk about some connections among the GKZ (introduced by Gelfand-Kapranov-Zelevinsky) hypergeometric series, orbifold singularities of the system, and chain integrals in some geometry. The GKZ hypergeometric series appeared in some very interesting contexts including arithmetic geometry, enumerative geometry and mathematical physics in the last few decades. I will report some new geometric realizations and interpretations of them.
I will review recent progress in understanding the dynamics of confining strings in pure Yang-Mills theory.
In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study local quantum many-body systems at low energies.
Check back for details on the next lecture in Perimeter's Public Lectures Series