Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Monday Dec 14, 2015
Speaker(s): 

We compute the scaling dimensions of a large class of disorder operators ("monopoles") in the planar limit of CS-fermion theories. The lightest such operator is shown to have dimension (2/3) k^{3/2}, where k is the CS level. The computation is based on recently developed techniques for solving CS-matter at all 't Hooft couplings, and the operator dimensions are obtained by finding complex saddles in the low-temperature phase of the CS-fermion path integral in a monopole background. We will also discuss the implications of this result to 3D bosonization dualities.

Collection/Series: 
Scientific Areas: 

 

Monday Dec 14, 2015
Speaker(s): 

In this talk, I present a new framework for topologically ordered gapped ground states in 2+1 spacetime dimensions (which generalizes to higher dimensions) using tensor networks. We will see that topological order can exist in tensor network states (TNS), if the local tensor satisfies certain axioms which we call MPO (matrix product operator)-injectivity and pulling through. We then continue with examples, and see how renormalization fixed point models in the literature (Levin-Wen models, etc.) can be covered in this framework.

Scientific Areas: 

 

Friday Dec 11, 2015
Speaker(s): 

We construct a new model of four-dimensional relativistic strings with integrable dynamics on the worldsheet. In addition to translational modes this model contains a single massless pseudoscalar worldsheet field - the worldsheet axion. The axion couples to a topological density which counts the self-intersection number of a string. The corresponding coupling is fixed by integrability to Q=716π−−−√≈0.37. We argue that this model is a member of a larger family of relativistic non-critical integrable string models.

Collection/Series: 
Scientific Areas: 

 

Thursday Dec 10, 2015
Speaker(s): 

 

Thursday Dec 10, 2015
Speaker(s): 

We investigate the properties of Chern-Simons theory coupled to massive fermions at finite density. In the large N limit, this is solvable to all orders in the coupling and we use this as a playground for investigating the behavior of strongly correlated condensed matter systems. At low temperatures the system enters a Fermi liquid state whose features may be compared to the phenomenological theory of Landau Fermi liquids and our analysis indicates the need to augment this framework to properly characterize parity odd transport.

Collection/Series: 
Scientific Areas: 

 

Thursday Dec 10, 2015
Speaker(s): 

The collection of all Dirac operators for a given fermion space defines its space of geometries.

Formally integrating over this space of geometries can be used to define a path integral and a thus a theory of quantum gravity.

In general this expression is complicated, however for fuzzy spaces a simple expression for the general form of the Dirac operator exists. This simple expression allows us to explore the space of geometries using Markov Chain Monte Carlo methods and thus examine the path integral in a manner similar to that used in CDT.

Collection/Series: 
Scientific Areas: 

 

Thursday Dec 10, 2015
Speaker(s): 

In the coming years, astrophysical observations of strongly gravitating systems will provide us with exciting new data to study extremely compact objects and Einstein’s theory of general relativity. In particular, gravitational wave observatories will soon reach the sensitivity required to detect merging black holes and neutron stars, while the Event Horizon Telescope is about to observe accretion flows around two supermassive black holes with sub-horizon resolution.

Collection/Series: 
Scientific Areas: 

 

Wednesday Dec 09, 2015
Speaker(s): 

I will review a recent proposal for a top-down approach to AdS/CFT by A. Schwarz, which has the advantage of requiring few assumptions or extraneous knowledge, and may be of benefit to information theorists interested by the connections with tensor networks. I will also discuss ways to extend this approach from the Euclidean formalism to a real-time picture, and potential relationships with MERA.

Scientific Areas: 

 

Tuesday Dec 08, 2015
Speaker(s): 

In this talk I will sketch the relation between unitary representations of the BMS3 group and three-dimensional, asymptotically flat gravity. More precisely, after giving an exact definition of the BMS group in three dimensions, I will argue that its unitary representations are classified by orbits of CFT stress tensors under conformal transformations. These stress tensors, in turn, can be interpreted as Bondi mass aspects for asymptotically flat metrics.

Collection/Series: 
Scientific Areas: 

 

Tuesday Dec 08, 2015
Speaker(s): 

We present an effective Z2 gauge theory that captures various competing phases in spin-1/2 kagome lattice antiferromagnets: the topological Z2 spin liquid (SL) phase, and the 12-site and 36- site valence bond solid (VBS) phases. Our effective theory is a generalization of the recent Z2 gauge theory proposed for SL phases by Wan and Tchernyshyov. In particular, we investigate possible VBS phases that arise from vison condensations in the SL.

Collection/Series: 
Scientific Areas: 

Pages