Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The entanglement spectrum, i.e. the logarithm of the eigenvalues of reduced density matrices of
quantum many body wave functions, has been the focus of a rapidly expanding research endeavor recently.
Initially introduced by Li & Haldane in the context of the fractional quantum Hall effect, its usefulness has been
shown to extend to many more fields, such as topological insulators, fractional Chern insulators, spin liquids,
continuous symmetry breaking states, etc.
Recent research has suggested deep connections between geometry and entropy. This connection was first seen in black hole thermodynamics, but has been more fully realized in the Ryu-Takayanagi proposal for calculating entanglement entropies in AdS/CFT. We suggest that this connection is even broader: entropy, and in particular compression, are the fundamental building blocks of emergent geometry. We demonstrate how spatial geometry can be derived from the properties of a recursive compression algorithm for the boundary CFT.