Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will review recent work on tensorial group field theories (TGFTs). The renormalization methods being developed in this context provide more and more control over their field-theoretic structures, and for models which increasingly resemble loop quantum gravity. Perhaps surprisingly, some of these models are asymptotically free and can therefore be made sense of at arbitrary values of the (abstract) scale with respect to which they are organized. They define in this sense UV complete quantum field theories.
A modified gravity (MOG) theory is explored that can explain current observational data in the present universe without detectable dark matter. This data includes galaxy rotation curves, cluster dynamics, gravitational lensing, globular clusters, the Bullet Cluster and solar system experiments. A vector field in the MOG action is a hidden, dark and massive photon that acts as a collisionless particle in the early universe and explains structure growth.
Gravity in 1+1 dimension is classically trivial but, as shown by A. Polyakov in 1981, it is a non-trivial quantum theory, in fact a conformal field theory (the Liouville theory), and also a string theory. In the last decades many important results and connexions with various areas of mathematics and theoretical physics have been established, but some important issues remain to be understood.
I will describe how to define a proper RG flow in the space of
tensor networks, with applications to the evaluation of classical
partition functions, euclidean path integrals, and overlaps of tensor
network states.