Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Electric dipole moments are extremely sensitive probes for additional sources of CP violation in new physics models. The multi-scale problem of relating the high precision measurements with neutrons, atoms and molecules to fundamental parameters can be approached model-independently to a large extent; however, care must be taken to include the uncertainties from especially nuclear and QCD calculations properly. The resulting bounds on fundamental parameters are illustrated in the context of Two-Higgs-Doublet models.
The emergence of classical behavior from an out-of-equilibrium quantum wavefunction is determined by its entanglement structure, in the form of redundant information shared between many local subsystems. We show how this structure can be generated via cosmological dynamics from the vacuum state of a massless field, causing the wavefunction to branch into classical field configurations. An accelerating epoch first excites the vacuum into a superposition of classical fields alongside a highly sensitive bath of super-horizon particles.
I will describe a holographic solution corresponding to a traversable wormhole in AdS/CFT. The construction involves directly coupling the boundary CFT's, and corresponds to chaos-facilitated quantum teleportation between the two sides. It does not violate boundary causality or other fundamental physics principles.
Recently it was porposed by Hawking, Perry and Strominger that an infinite number of asymptotic charges may play a role in the decription of black hole entropy. With this context in mind we review the classical definition of surface charges in 3+1 gravity (and electromagnetism) from a slighly different framework by using the tetrad-connection variables. The general derivation follows the canonical covariant symplectic formalism in the language of forms. Applications to 3+1 and 2+1 charged and rotating black hole families are briefly discussed as a check.
Check back for details on the next lecture in Perimeter's Public Lectures Series