Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
This has been a leading question in condensed matter physics since the discovery of the cuprate superconductors. In this talk I will review some of the DMRG and tensor network results for the ground states of these models. A key question I'll address is the issue of stripes: are the ground states striped? Do stripes compete with or induce d-wave superconductivity? Another question I'll address is: how well does 2D DMRG do in comparison with iPEPS and quantum Monte Carlo. I will also show recent results for a standard 3-band Hubbard model for the cuprates.
Plasma-filled magnetospheres can extract energy from a spinning black hole and provide the power source for a variety of observed astrophysical phenomena. These magnetospheres are described by the highly nonlinear equations of force-free electrodynamics, or FFE. Typically these equations can only be solved numerically. In this talk I will explain how to analytically obtain several infinite families of exact solutions of the full nonlinear FFE equations very near the horizon of a maximally spinning black hole, where the energy extraction takes place.
For an anyon model in two spatial dimensions described by a modular tensor category, the topological S-matrix encodes the mutual braiding statistics, the quantum dimensions, and the fusion rules of anyons. It is nontrivial whether one can compute the topological S-matrix from a single ground state wave function. In this talk, I will show that, for a class of Hamiltonians, it is possible to define the S-matrix regardless of the degeneracy of the ground state. The definition manifests invariance of the S-matrix under local unitary transformations (quantum circuits).
Recently a new and rather unexpected connection between condensed matter physics and algebraic topology has been noted. Namely, it appears that phases of matter with an energy gap, no long-range entanglement, and fixed symmetry can be classified using cobordism theory. I will exhibit several examples of this connection and describe a possible explanation.
Roughly speaking, Many-Body Localization (MBL) refers to the state of a material that fails to thermalize. Though MBL has mostly been studied in quenched disordered systems, several authors have recently proposed that this phase could be realized in clean (translation invariant) systems too. In this talk, I will discuss this idea and ask to which extent an MBL phase can indeed be expected in systems without quenched disorder. Hopefully, the discussion shed also some light on the localization-delocalization transition for more generic many-body systems. From joint work with W.