Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Two topics have been gaining momentum in different fields of physics: At the intersection of condensed matter and high-energy physics lies the out-of-time-ordered correlator (OTOC). The OTOC reflects quantum many-body equilibration; chaos; and scrambling, the spread of quantum information through many-body entanglement. In quantum optics and quantum foundations, quasiprobabilities resemble probabilities but can become negative and nonreal. Such nonclassical values can signal nonclassical physics, such as the capacity for superclassical computation.
The fine grained energy spectrum of quantum chaotic systems, which are widely believed to be characterized by random matrix statistics. A basic scale in these systems is the energy range over which this behavior persists. We defined the corresponding time scale by the time at which the linearly growing ramp region in the spectral form factor begins. We dubbed this ramp time. It is also referred to as the ergodic or Thouless time in the condensed matter physics community.
The near horizon region of any black hole looks like flat space and displays an approximate Poincare symmetry. We study the way these symmetries are realized for near extremal black holes.
Recently we pointed out that the black hole interior operators can be reconstructed by using the Hayden-Preskill recovery protocols. Building on this observation, we propose a resolution of the firewall problem by presenting a state-independent reconstruction of interior operators. Our construction avoids the non-locality problem which plagued the "A=RB" or "ER=EPR" proposals. We show that the gravitational backreaction by the infalling observer, who simply falls into a black hole, disentangles the outgoing mode from the early radiation.
In this talk, I will discuss a newly proposed (pseudo-)critical phenomena governed by complex fixed points. I will start with the idea of complex fixed point at complex physical couplings and then introduce the recent conjectured complex conformal field theory with complex conformal data (e.g. central charge and scaling dimensions) which is suggested to describe these complex fixed points. These new concepts are putatively related to many interesting topics, such as the deconfined criticality, walking behavior in the gauge theories, weakly first order phase transitions and so on.