Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Analyzing characteristics of an unknown quantum system in a device-independent manner, i.e., using only the measurement statistics, is a fundamental task in quantum physics and quantum information theory. For example, device-independence is a very important feature in the study of quantum cryptography where the quantum devices may not be trusted.
3d N=4 theories on the sphere have interesting supersymmetric sectors described by 1d QFTs and defined as the cohomology of a certain supercharge. One can define such a 1d sector for the Higgs branch or for the Coulomb branch. We study the Higgs branch case, meaning that the 1d QFT captures exact correlation functions of the Higgs branch operators of the 3d theory. The OPE of the 1d theory gives a star-product on the Higgs branch which encodes the data of these correlation functions.
I will discuss ways to search for new physics with the LHC heavy ion program and the ATLAS/CMS high level trigger.
Integral values of zeta functions are important not only for what they say about other values of their respective functions, but also for what they say about transcendence degree questions for appropriate extensions of the rationals or other number fields. They also appear in some recent computations relevant to particle physics.
In this talk we will give a quick introduction to the theory of periods and motives, relate said theory to special values of zeta functions, and discuss a graphical definition of the associated category of motives.
A geometric approach to investigation of quantum entanglement is advocated.
We discuss first the geometry of the (N^2-1)--dimensional convex body
of mixed quantum states acting on an N--dimensional Hilbert space
and study projections of this set into 2- and 3-dimensional spaces.
For composed dimensions, N=K^2, one consideres the subset
of separable states and shows that it has a positive measure.
Analyzing its properties contributes to our understanding of
quantum entanglement and its time evolution.
We discuss recent work showing that in type A_n the category of equivariant perverse coherent sheaves on the affine Grassmannian categorifies the cluster algebra associated to the BPS quiver of pure N=2 gauge theory. Physically, this can be understood as a statement about line operators in this theory, following ideas of Gaiotto-Moore-Neitzke, Costello, and Kapustin-Saulina -- in short, coherent IC sheaves are the precise algebro-geometric counterparts of Wilson-'t Hooft line operators.
In this talk, I would introduce spontaneous nematicity in the background of fractional quantum Hall fluids where symmetry breaking phenomenon intertwined with topological phase of matter. The resulting nematic FQH state is characterized by an order parameter that represents these quadrupolar fluctuations, which play the role of fluctuations of the local geometry of the quantum fluid.
In recent years, precise cosmological measurements have provided strong evidence for new physics beyond the Standard Model, occurring both in the very early universe and also today. In the near future, large-scale galaxy surveys will open another window on many different areas of physics, including tests of gravity, probes of dark energy, and cosmic inflation. However, interpreting galaxy surveys presents new challenges, because galaxies are sensitive to astrophysics that are unimportant for the cosmic microwave background.
To describe observed phenomena in the lab and to apply superposition principle to gravity, quantum theory needs to be generalized to incorporate indefinite causal structure. Practically, indefinite causal structure offers advantage in communication and computation. Fundamentally, superposing causal structure is one approach to quantize gravity (spacetime metric is equivalent to causal structure plus conformal factor, so quantizing causal structure effectively quantizes gravity).