Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
I will discuss how the standard frameworks for operational theories involve a scrambling of causal and inferential concepts. I will then present a new framework for operational theories which separates out the inferential and the causal aspects of a given physical theory. Generalized probabilistic theories and operational probabilistic theories are recovered within our framework when one ignores some of these distinctions.
In order to satisfy the Reeh-Schlieder theorem, I study the infinite-dimensional Hilbert spaces using von Neumann algebras. I will first present the theorem that the entanglement wedge reconstruction and the equivalence of relative entropies between the boundary and the bulk (JLMS) are exactly identical. Then I will demonstrate the entanglement wedge reconstruction with a tensor network model of von Neumann algebra with type II1 factor, which guarantees the equivalence between the boundary and the bulk.
We will investigate a common property of the measurements used in measurement-based quantum computing paradigms. We will show how this relates to the notion of equiangular planes. We will ask when a continuous collection of such planes can give a universal model. Surprisingly, in a sense that will be made precise, octonionic lines turn out to be the unique answer. This research is motivated by the challenge to construct a measurement-based model that exploits chemical protection given by the symmetries of certain molecules. A joint work with Michael Freedman and Zhenghan Wang.
Substantial astronomical observations have established that approximately 25% of the energy density of the universe is composed of cold non-baryonic dark matter, whose detection and characterization could be key to improving our understanding of the laws of physics. Over the past three decades, physicists have largely focused on searching for dark matter within the 10 GeV-1 TeV range (WIMPs), unfortunately without success.In this talk, we’ll discuss the experimental requirements when searching for dark matter throughout the mass range from 50meV- 500 MeV.
Our earlier findings indicate the violation of the 'volume simplicity' constraint in the current Spinfoam models (EPRL-FK-KKL). This result, and related problems in LQG, promted to revisit the metric/vielbein degrees of freedom in the classical Einstein-Cartan gravity. Notably, I address in detail what constitutes a 'geometry' and its 'group of motions' in such Poincare gauge theory. In a differential geometric scheme that I put forward the local translations are not broken but exact, and their relation to diffeomorphism transformations is clarified.
We are building an experiment in which a levitated 1 µm diamond containing a nitrogen vacancy (NV) centre would be put into a spatial quantum superposition [1-3]. This would be able to test theories of spontaneous wavefunction collapse [4]. We have helped theory collaborators to propose how to do this experiment [5-9], as well as a much more experimentally ambitious extension which would test if gravity permits a quantum superposition [10]. There are related proposals from other groups [11-13].
The lesson of general relativity is background independence: a physical theory should not be formulated in terms of external structures. This motivates a relational approach to quantum dynamics, which is necessary for a quantum theory of gravity. Using a covariant POVM to define a time observable, I will introduce the so-called trinity of relational quantum dynamics comprised of three distinct formulations of the same relational quantum theory: evolving constants of motion, the Page-Wootters formalism, and a symmetry reduction procedure.