Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
If General Relativity emerges from quantum gravity, then general covariance, the gauge invariance of GR, will emerge with it. We can ask, within any approach to the problem of quantum gravity, what is the “precursor” principle or precept that will give rise to — or manifest itself as — general covariance in the large scale semi-classical approximation?
Given how important the understanding of general covariance (or lack of it!) was in the development of GR we might expect that thinking about this question will be similarly important in the development of quantum gravity.
In quantum error correcting codes, there is a distinction
between coherent and incoherent noise. Coherent noise can cause the
average infidelity to accumulate quadratically when a fixed channel is
applied many times in succession, rather than linearly as in the case
of incoherent noise. I will present a proof that unitary single qubit
noise in the 2D toric code with minimum weight decoding is mapped to
less coherent logical noise, and as the code size grows, the coherence
of the logical noise channel is suppressed. In the process, I will
We consider supersymmetric $AdS_3\times Y_7$ solutions of type IIB supergravity dual to N=(0,2) SCFTs in d=2, as well as $AdS_2\times Y_9$ solutions of D=11 supergravity dual to N=2 supersymmetric quantum mechanics, some of which arise as the near horizon limit of supersymmetric, charged black hole solutions in $AdS_4$. The relevant geometry on $Y_{2n+1}$, $n\ge 3$ was first identified in 2005-2007 and around that time infinite classes of explicit examples solutions were also found but, surprisingly, there was little progress in identifying the dual SCFTs.
Understanding entanglement in QFTs is a challenging topic that involves many aspects. One important probe for this is the modular (or entanglement) Hamiltonian, which is closely related to the Unruh effect. We determine this operator for the chiral fermion at finite temperature on the circle using complex analysis, and show that it exhibits surprising new features. This simple system illustrates how a modular flow can transition from complete locality to complete non-locality as a function of temperature, thus bridging the gap between previously known limits.
Check back for details on the next lecture in Perimeter's Public Lectures Series