Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
The study of strongly interacting quantum matter has been at the forefront of condensed matter research in the last several decades. An independent development is the discovery of topological band insulators. In this talk I will describe phenomena that occur at the confluence of topology and strong interactions.
The Hallmark of strongly entangled quantum phases is an intrinsic impossibility to describe them locally in terms of microscopic degrees of freedom. Two popular methods that have been developed to analytically describe these exotic states are known as (1) ‘parton construction’ and (2) ‘coupled-wire approach’. The former provides a constructive route for determining which non-trivial phases may arise, in principle, for a given set of constituent degrees of freedom and symmetries.
FIsher Matrix
We perform both numerical and theoretical studies on the phase diagram of the Kitaev materials in the presence of a magnetic field. We find that a new quantum spin liquid state with neutral Fermi surfaces emerges at intermediate field strengths, between the regimes for the non-Abelian chiral spin liquid state and for the trivial polarized state. We discuss the exotic field-induced quantum phase transitions from this new state with neutral Fermi surfaces to its nearby phases.
I will describe an infinite set of exotic gauge theories that have recently and simultaneously emerged in several a priori unrelated areas of condensed matter physics such as self-correcting quantum memory, topological order in 3+1 dimensions, spin liquids and quantum elasticity. In these theories the gauge field is a symmetric tensor (not to be confused with higher form, which is an anti-symmetric tensor), or in more exotic situations, the gauge fields do not have a well-defined transformation properties under rotations.
Response of a particle detector to stationary states
Two topics have been gaining momentum in different fields of physics: At the intersection of condensed matter and high-energy physics lies the out-of-time-ordered correlator (OTOC). The OTOC reflects quantum many-body equilibration; chaos; and scrambling, the spread of quantum information through many-body entanglement. In quantum optics and quantum foundations, quasiprobabilities resemble probabilities but can become negative and nonreal. Such nonclassical values can signal nonclassical physics, such as the capacity for superclassical computation.
The fine grained energy spectrum of quantum chaotic systems, which are widely believed to be characterized by random matrix statistics. A basic scale in these systems is the energy range over which this behavior persists. We defined the corresponding time scale by the time at which the linearly growing ramp region in the spectral form factor begins. We dubbed this ramp time. It is also referred to as the ergodic or Thouless time in the condensed matter physics community.
The near horizon region of any black hole looks like flat space and displays an approximate Poincare symmetry. We study the way these symmetries are realized for near extremal black holes.
Check back for details on the next lecture in Perimeter's Public Lectures Series