Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In 1997, Kontsevich gave a universal solution to the "deformation quantization" problem in mathematical physics: starting from any Poisson manifold (the classical phase space), it produces a noncommutative algebra of quantum observables by deforming the ordinary multiplication of functions. His formula is a Feynma expansion, involving an infinite sum over graphs, weighted by volume integrals on the moduli space of marked holomorphic disks.
CMB Polarization
Kitaev materials — spin-orbit assisted Mott insulators, in which local, spin-orbit entangled j=1/2 moments form that are subject to strong bond-directional interactions — have attracted broad interest for their potential to realize spin liquids. Experimentally, a number of 4d and 5d systems have been widely studied including the honeycomb materials Na2IrO3, α-Li2IrO3, and RuCl3 as candidate spin liquid compounds — however, all of these materials magnetically order at sufficiently low temperatures.
Tensor Models provide one of the calculationally simplest approaches to defining a partition function for random discrete geometries. The continuum limit of these discrete models then provides a background-independent construction of a partition function of continuum geometry, which are candadates for quantum gravity. The blue-print for this approach is provided by the matrix model approach to two-dimensional quantum gravity. The past ten years have seen a lot of progress using (un)colored tensor models to describe state sums if discrete geometries in more than two dimensions.
MCMC examples
Quantum energy teleportation
Intorduction to Monte Carlo Markov Chain
Relativity and communication: Applications and Fundamental aspects in Cosmology.
We study the eigenstate properties of a nonintegrable spin chain that was recently realized experimentally in a Rydberg-atom quantum simulator. In the experiment, long-lived coherent many-body oscillations were observed only when the system was initialized in a particular product state. This pronounced coherence has been attributed to the presence of special "scarred" eigenstates with nearly equally-spaced energies and putative nonergodic properties despite their finite energy density.
In string backgrounds with flux and branes, there are subtleties in identifying the independent, globally-defined degrees of freedom due to required gauge patching, which we illustrate with background flux. Work by Cariglia and Lechner (extending Dirac and Teitelboim) allows separation of D-brane and flux degrees of freedom without doubling the gauge sector in a democratic formalism.
Check back for details on the next lecture in Perimeter's Public Lectures Series