Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
tba
Many systems take the form of networks: the Internet, the World Wide Web, social networks, distribution networks, citation networks, food webs, and neural networks are just a few examples. I will show some recent empirical results on the structure of these and other networks, particularly emphasizing degree sequences, clustering, and vertex-vertex correlations. I will also discuss some graph theoretical models of networks that incorporate these features, and give examples of how both empirical measurements and models can lead to interesting and useful predictions about the real world.
TBA
tba
Noncommutative geometry is a more general formulation of geometry that does not require coordinates to commute. As such it unifies quantum theory and geometry and should appear in any effective theory of quantum gravity. In this general talk we present quantum groups as a microcosm of this unification in the same way that Lie groups are a microcosm of usual geometry, and give a flavour of some of the deeper insights they provide. One of them is the ability to interchange the roles of quantum theory and gravity by `arrow reversal'.
Fractional branes and dynamical SUSY breaking
The causal set -- mathematically a finitary partial order -- is a candidate discrete substratum for spacetime. I will introduce this idea and describe some aspects of causal set kinematics, dynamics, and phenomenology, including, as time permits, a notion of fractal dimension, a (classical) dynamics of stochastic growth, and an idea for explaining some of the puzzling large numbers of cosmology. I will also mention some general insights that have emerged from the study of causal sets, the most recent one concerning the role of intermediate length-scales in discrete spacetime theories.
Check back for details on the next lecture in Perimeter's Public Lectures Series