Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
While Calabi-Yau compactifications of string theory are mathematically elegant, they typically result in many massless scalars in the low-energy, four-dimensional theory. Thus, it is interesting to consider non-Kahler compactifications in the hopes of deriving more phenomenologically interesting models. These models have received little attention in the heterotic theory owing to their mathematical complexity, however in recent work we have found a potential way to derive interesting features of such compactifications using gauged linear sigma models.
The descriptions of the quantum realm and the macroscopic classical world differ significantly not only in their mathematical formulations but also in their foundational concepts and philosophical consequences. When and how physical systems stop to behave quantumly and begin to behave classically is still heavily debated in the physics community and subject to theoretical and experimental research.
A conceptual framework is proposed for understanding the relationship between observables and operators in mechanics. We claim that the transformations generated by the objective properties of a physical system must be strictly interpreted as gauge transformations. It will be shown that this postulate cannot be consistently implemented in the framework of classical mechanics. We argue that the uncertainty principle is a consequence of the mutual intertwining between objective properties and gauge-dependant properties.
Relational particle mechanics are theories of relative angles and relative (ratios of) separations only. These bear a number of resemblances to the geometrodynamical formulation of general relativity and as such are useful analogues for at least some approaches to the notorious problem of time in quantum gravity.
In this talk we propose a Reduced Phase Space Quantization approach to Loop Quantum Gravity. The idea is to combine the relational formalism introduced by Rovelli in the extended form developed by Dittrich and the Brown-Kuchar-Mechanism. The relational formalism can be used to construct gauge invariant observables for constrained systems such as General Relativity, while the Brown-Kuchar-Mechanism is a particular application of the relational formalism in which pressureless dust is taken as the clock of the system.
I will talk about meta-stable supersymmetry breaking vacua in SQCD and Seiberg-Witten Theories. Also I will mention their string theory embeddings
We will consider stability in the string theory landscape. A survey over several classes of flux vacua with different characteristics indicates that the vast majority of flux vacua with small cosmological constant are unstable to rapid decay to a big crunch. Only vacua with large compactification radius or (approximately) supersymmetric configurations turn out to be long lived. We will speculate that regions of the landscape with approximate R-symmetry, while rare, might be cosmological attractors.