Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Baker and Richter's $A_\infty$ analog of the complex cobordism spectrum provides characteristic numbers for complex-oriented toric manifolds, which generalize to define similar invariants for Hamiltonian toric dynamical systems: roughly, the `completely integrable' systems of classical mechanics which (by KAM theory) possess remarkable stability properties. arXiv:1910.12609
We investigate putting 2+1 free and holographic theories on a product of time with a curved compact 2-d space. We then vary the geometry of the space, keeping the area fixed, at zero/finite temperature, and measure the Casimir/free energy respectively. I will begin by discussing the free theory for a Dirac fermion or scalar field on deformations of the round 2-sphere. I will discuss how the Dirac theory may arise in physical systems such as monolayer graphene. For small deformations we solve analytically using perturbation theory.
I'll discuss elliptic cohomology from a physical perspective, indicating the importance of the Segal-Stolz-Teichner conjecture and joint work with D. Berwick-Evans on rigorously proving some of these physical predictions.
Thirteen years ago, Lurie has sketched a way to obtain equivariant elliptic cohomology and equivariant topological modular forms without the need to restrict to rational or complex coefficients. Recently, David Gepner and I have found one way to flesh out the details and and provide computations in the U(1)-equivariant case. On this work I will report.
Projective vector bundles (or gerbe modules) are generalizations of vector bundles in the presence of a gerbe on manifolds. Given a projective vector bundle, we will first show how to use it to twist the Witten genus to get modular invariants, which we call projective elliptic genera. Then we will give two applications: (1) given any pseudodifferential operator, we will construct modular invariants generalizing the Witten genus, which corresponds to the Dirac operator; (2) we will enhance the Hori map in T-duality to the graded Hori map and show that it sends Jacobi forms to Jacobi forms.
Using a definition of bulk diff-invariant observables, we go into the bulk of 2d Jackiw-Teitelboim gravity. By mapping the computation to a Schwarzian path integral, we study exact bulk correlation functions and discuss their physical implications. We describe how the black hole thermal atmosphere gets modified by quantum gravitational corrections. Finally, we will discuss how higher topological effects further modify the spectral density and detector response in the Unruh heat bath.
Given the large push by academia and industry (e.g., IBM and Google), quantum computers with hundred(s) of qubits are at the brink of existence with the promise of outperforming any classical computer. Demonstration of computational advantages of noisy near-term quantum computers over classical computers is an imperative near-term goal. The foremost candidate task for showing this is Random Circuit Sampling (RCS), which is the task of sampling from the output distribution of a random circuit. This is exactly the task that recently Google experimentally performed on 53-qubits.
I will give an overview of holographic cosmology and discuss recent results and work in progress.
In holographic cosmology time evolution is mapped to inverse RG flow of the dual QFT. As such this framework naturally explains the arrow of time via the
monotonicity of RG flows. Properties of the RG flow are also responsible for the holographic resolution of the classic puzzles of hot big bang cosmology, such as the horizon problem, the flatness problem and the relic problem.
The discovery of the Higgs boson has revealed that the quartic Higgs self-coupling becomes small at very high energy scales. Guided by this observation, I introduce Higgs Parity, which is a spontaneously broken symmetry exchanging the standard model Higgs with its parity partner. In addition to explaining the small Higgs quartic coupling, Higgs Parity can provide a dark matter candidate, solve the strong CP problem, and arise from an SO(10) grand unified gauge symmetry.