This series consists of talks in the area of Superstring Theory.
Recently there has been great interest in calculating transport coefficients for field theories at large coupling, using AdS/CFT. In this talk I will discuss recent work showing how to use the membrane paradigm to easily compute the shear viscosity and conductivity in arbitrary gravity theories. In a certain sense these can be thought of as effective couplings at the black hole horizon dual to the field theory plasma. An explicit Wald-like formula for these couplings is given for a large class of generalized gravity theories.
TBA
Universal scaling behavior of the entanglement entropy in conformal field theories uncovered by a holographic calculation.
Entanglement entropy and entanglement entropy spectrum in topological insulators and related systems.
Complete classification of topological insulators (including, e.g., the quantum Hall effect and the quantum spin Hall systems), and superconductors (including, e.g., chiral p-wave SC and the B-phase of 3He). An interacting bosonic model that realizes a topological superconducting phase in three spatial dimensions.
We study the sub-structure of heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region.
We present a string dual to finite temperature N=4 SYM coupled to Nf massless flavors with abelian symmetry. The solution includes the backreaction of the flavor up to second order in the ratio N_f/N_c times the 't Hooft coupling at the temperature of the dual QGP. The thermodynamics show a departure from conformality as a second order effect, and the energy loss of a quark through the plasma is enhanced by new degrees of freedom.
We present some exact results and new approaches to SUSY breaking theories.
By using the AdS/CFT duality, the computation of MSYM scattering amplitudes at strong coupling boils down to the computation of minimal areas on AdS_5 with certain boundary conditions. Unfortunately, this seems to be a hard problem. In this talk we show how one can make progress by restricting to AdS_3.