This series consists of talks in the area of Superstring Theory.
I will discuss ongoing work developing Hamiltonian truncation methods for studying strongly-coupled IR physics originating from a perturbed UV conformal field theory. This method uses a UV basis of conformal Casimir eigenstates, which is truncated at some maximum Casimir eigenvalue, to approximate the low energy spectrum of the IR theory. So far, such methods have been limited to theories in 2D, and I will present a new framework for generalizing this approach to higher dimensions.
I will discuss a class of non-compact solutions to the Strominger-Hull system, the first order system of equations for preserving N=1 supersymmetry in heterotic compactifications to four dimensions. The solutions consists of the conifold and its Z2 orbifold with Abelian gauge fields and non-zero three-form flux. The heterotic Bianchi Identity is solved in a large charge limit of the gauge fields, where it is shown that the topological term p1(TX) can be consistently neglected. At large distances, these solutions are locally Ricci-flat.
In effective field theory, causality fixes the signs of certain interactions. I will describe how these Lorentzian constraints are encoded in the Euclidean theory, and use the conformal bootstrap to derive analogous causality constraints in CFT. Applied to spinning fields, these constraints include (some of) the Hofman-Maldacena bounds derived from conformal collider physics. I will also discuss applications to holographic theories.
For a CFT perturbed by a relevant operator, the entanglement entropy of a spherical region may be computed as a perturbative expansion in the coupling. A similar perturbative expansion applies for excited states near the vacuum. I will describe a method due to Faulkner for calculating these entanglement entropies, and apply it in the limit of small sphere size. The motivation for these calculations is a recent proposal by Jacobson suggesting an equivalence between the Einstein equation and the "maximal vacuum entanglement hypothesis" for quantum gravity.
I will describe ongoing work with Miguel Paulos, Joao Penedones, Jon Toledo and Balt van Rees. We are attempting to bootstrap massive quantum field theories.
We formulate a massive S-matrix bootstrap which we analyze both numerically and analytically. We confront our findings with the conformal theory results of lecture 1. We will derive analytic bounds for the couplings in massive 2d QFTs and observe that the Ising field theory with magnetic field lies precisely at the boundary of these bounds. We conclude with higher dimensional speculations.
I will describe ongoing work with Miguel Paulos, Joao Penedones, Jon Toledo and Balt van Rees. We are attempting to bootstrap massive quantum field theories.
A massive quantum field theory can be put in a large AdS space, i.e. in a box. Its correlators define, as they approach the boundary, a conformal theory. The bootstrap of the latter can pose strong constraints on the former as we will describe. We will then initiate a presentation of the general and of the peculiar features of S-matrices in two dimensions.