This series consists of talks in the area of Superstring Theory.
We investigate the use of the embedding formalism and the Mellin transform in the calculation of tree-level conformal correlation functions in $AdS$/CFT.
A non-trivial test of the string vs. integrability correspondence is
suggested: exact equivalence is established between strings in AdS4 x
Critical theories of gravity are certain higher derivative theories in which parameters are so tuned as to eliminate massive excitations for the spin-2 field. Asymptotically AdS black hole entropy in these theories works out to be zero. We show that such theories arise naturally on the boundary of AdS in the form of counterterms. Such counterterms are derived by demanding cutoff independence of the Euclidean onshell action and black hole entropy.
Taking String Theory as a ``theoretical laboratory'', I will present handy expressions for bosonic and fermionic (SUSY) higher-spin Noether currents. I will also describe a class of non-local higher-spin Lagrangian couplings that are generically required by the Noether procedure starting from four-points. The construction clarifies the origin of old problems for these systems and links String Theory to some aspects of Field Theory that go beyond its conventional low energy limit.
In this talk I will provide evidence supporting the Dolan/Nirschl/Osborn conjecture for the precise form of the amplitude of four-point functions of 1/2-BPS operators in N=4 SYM theory at strong coupling and in the large N limit. I will also discuss the methods that allowed the evaluation of amplitudes involving operators of arbitrary conformal dimension.
TBA
In this talk, I will present a first principle construction of a holographic dual for gauged matrix models. The dual theory is a closed string field theory coupled with an emergent two-form gauge field defined in one higher dimensional space. The bulk space with an extra dimension emerges as a well defined classical background only when the two-form gauge field is in the deconfinement phase. Based on this, it is shown that critical phases that admit holographic descriptions form a novel universality class with a non-trivial quantum order.
Sound waves with long-distance propagation are both a consequence of hydrodynamics, and a danger to hydrodynamics' very existence, as they violate the assumption of local equilibration. In the talk, I will discuss what the thermally excited sound and shear waves do to viscosity. In 2+1 dimensions, the shear viscosity and the diffusion constant cease being independent transport coefficients. In 3+1 dimensions, the fluctuations render the second-order hydrodynamics invalid.
I will discuss three ways in which (the string landscape and) eternal inflation is fun: (1) because it motivates revisiting some beautiful, classic calculations; (2) because its global description requires asking novel questions with possible broad ramifications; and (3) because it leads to experimental predictions.