This series consists of talks in the area of Superstring Theory.
Mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory---our leading attempt to explain the universe to date. The audience will gain a sense of how mathematicians think and approach the world and realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but it is instead crucial to our understanding of the physical world.
Hints for the possibility of two times emerged in M-theory in 1995. If taken seriously this required new concepts that could solve unitarity
(ghost) and causality problems so that physics could be described sensibly in a spacetime with two times. The necessary concept turned out to be a gauge symmetry in phase space. This is an unfamiliar concept, but is one that extends Einstein's approach to the formulation of fundamental equations of physics, by removing the perspective of the observer, not only in position space but more generally in phase space.
We show how to extract from conjectured S-dualities the dimensions and flavor symmetry transformation properties of certain Higgs branches (hypermultiplet flat directions) of strongly coupled N=2 d=4 superconformal field theories. This leads to an expansion and refinement of the exact data (conformal dimensions, central charges) that can be computed for N=2 SCFTs.
TBA
The properties of a superfluid phase transition with a d-wave order parameter in a strongly interacting field theory with gravity dual are considered. In the context of the AdS/CFT correspondence, this amounts to writing down an action for a charged, massive spin two field on a background, and I will discuss all technical problems. In the second part I will show that coupling bulk fermions to the spin two field and studying the fermionic two-point function, one recovers interesting features of d-wave superconductors, like d-wave gap, Dirac nodes and Fermi arcs.
We derive a holographic dual description of free quantum field theory in arbitrary dimensions, by reinterpreting the exact renormalization group, to obtain a higher spin gravity theory of the general type which had been proposed and studied as a dual theory
TBA
We will discuss two topics. First we will revisit the asymptotic structure of classical de Sitter space. In particular we will construct charges at future infinity (I^+) and obtain the asymptotic symmetry group drawing parallels with the BMS group of flat space. Secondly, move away from the region I^+ and study the space living near the cosmological horizon by considering large rotating Nariai black holes whose size tends to that of the cosmological horizon.
The Z2 orbifold of N=4 SYM can be connected to N=2 superconformal QCD by a marginal deformation. The spin chains in this marginal family of theories have sufficient symmetry that allows for an all-loop determination of dispersion relation of BMN magnons. The exact two body S matrix is also fixed up to an overall phase. The exact dispersion relation of the magnon can be obtained from the matrix model of lowest modes on S^3, as well. I'll also talk briefly about some progress made towards the string dual of N=2 superconformal QCD, the endpoint of the deformation.
In this talk I will discuss the applications of the gauge/gravity duality to the strongly coupled quark gluon plasma, focusing in particular on the role of the shear viscosity to entropy ratio.
It has been argued that the lower bound on the shear viscosity to entropy density in strongly coupled plasmas can be understood in terms of microcausality violation in the dual gravitational description.