Perimeter Institute will host an international conference from July 18-21, 2006, in honour of Abner Shimony, one of the most eminent physicist-philosophers of our time. Professor Shimony is renowned for his contribution to the famous Bell-CHSH inequality and for many other contributions in the foundations of physics and philosophy.
Talks and discussions will cover a wide range of subjects within physics and philosophy, including theoretical and experimental aspects of quantum entanglement and non-locality, relativistic causality, quantum measurement problem, probability theory, temporal transience, the mind-body problem, and scientific realism.
After having been a Whiteheadian for decades, Abner, under the influence of Lovejoys book, "The Revolt against Dualism, no longer accepts Whiteheads philosophy. In this paper I try to challenge this change of heart, as well as suggest a modification of Whiteheads philosophy that allows for an elegant interpretation of
the EPR/Bell correlations.
Abner Shimony mentions that his undergraduate years at Yale in the forties provided an introduction to three profound philosophers that influenced his thought Alfred North Whitehead, Charles Sanders Peirce and Kurt Gödel. For all three, mathematics played a central role in the unfolding of their lives and thought. This paper will focus on the earliest of this trio, and focus on Peirces complex and rich views on the nature and practice of mathematics, attending first to the necessary and foundational nature Peirce ascribes to mathematics and to the place of hypothesis, diagrams,
In the context of Bell-type experiments, two related notions of "separability" are offered, one of which is logically stronger than the other. It is shown that the weaker of these is logically equivalent to the statistical independence condition widely taken to have been refuted by the results of experiments testing the Bell inequalities. Some consequences of the analysis are discussed.
I will show Abner how to construct Minkowski's space-time diagrams directly from Einstein's two postulates and some very elementary plane geometry. This geometric route into special relativity was developed while teaching the subject to nonscientists, but some of its features may be unfamiliar to physicists and philosophers.