Quantum Gravity

This series consists of talks in the area of Quantum Gravity.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Thursday Sep 19, 2019
Speaker(s): 

We review recent efforts to turn the cosmological constant into a dynamical variable without an ungainly proliferation of free parameters. In a cosmological setting where parity invariance is imposed (along with homogeneity and isotropy) this leads to phenomenological disaster. However, in this theory it is possible to construct parity violating Friedman models due to torsion, a re-enactment of "Cartan's spiral staircase".

Collection/Series: 
Scientific Areas: 

 

Thursday Sep 05, 2019
Speaker(s): 

I will discuss the problem of an observer's S-matrix in de Sitter space, i.e. the mapping between fields on the initial and final horizons of a de Sitter static patch. I will show how the S-matrix of free massless fields can be packaged in a spinor-helicity language. This involves “cheating” the static patch’s painfully low symmetry, by relating each horizon separately to global, de Sitter-invariant data.

Collection/Series: 
Scientific Areas: 

 

Thursday Aug 29, 2019
Speaker(s): 

If General Relativity emerges from quantum gravity, then general covariance, the gauge invariance of GR, will emerge with it. We can ask, within any approach to the problem of quantum gravity, what is the “precursor” principle or precept that will give rise to — or manifest itself as — general covariance in the large scale semi-classical approximation?
Given how important the understanding of general covariance (or lack of it!) was in the development of GR we might expect that thinking about this question will be similarly important in the development of quantum gravity.

Collection/Series: 
Scientific Areas: 

 

Thursday Aug 22, 2019
Speaker(s): 

In this talk I will report on recent progress in building QFT models on causal sets. The framework I'm using is that of perturbative algebraic quantum field theory (pAQFT). It was developed for rigorous study of perturbative QFT in the continuum, but can also be applied in the situation where spacetime is replaced by a discrete structure. Causality plays a key role in pAQFT, so it is natural to apply it to causets.

Collection/Series: 
Scientific Areas: 

 

Thursday May 30, 2019
Speaker(s): 

We derive an effective Hamiltonian constraint for the Schwarzschild geometry starting from the full loop quantum gravity Hamiltonian constraint and computing its expectation value on coherent states sharply peaked around a spherically symmetric geometry. We use this effective Hamiltonian to study the interior region of a Schwarzschild black hole, where a homogeneous foliation is available.

Collection/Series: 
Scientific Areas: 

 

Thursday May 23, 2019
Speaker(s): 

Trisections were introduced by Gay and Kirby in 2013 as a way to study 4-manifolds. They are similar in spirit to a common tool in a lower dimension: Heegaard splittings of 3-manifolds. In both cases, one understands a manifold by examining the ways that standard building blocks can be put together. They both also have the advantage of changing problems about manifolds into problems about diagrams of curves on surfaces. This talk will be a relaxed introduction to these decompositions.

Collection/Series: 
Scientific Areas: 

 

Thursday May 16, 2019
Speaker(s): 

Tensor models exhibit a melonic large $N$ limit: this is a non trivial family of Feynman graphs that can be explicitly summed in many situations. In $d$ dimensions, they give rise to a new family of conformal field theories and provide interesting examples of the renormalization group flow from a free theory in the UV to a melonic large $N$ CFT in the IR. 

Collection/Series: 
Scientific Areas: 
 

 

Thursday May 09, 2019
Speaker(s): 

What is the black hole in quantum mechanics? We examine this problem in a self-consistent manner. First, we analyze time evolution of a 4D spherically symmetric collapsing matter including the back reaction of particle creation that occurs in the time-dependent spacetime. As a result, a compact high-density star with no horizon or singularity is formed and eventually evaporates. This is a quantum black hole. We can construct a self-consistent solution of the semi-classical Einstein equation showing this structure.

Collection/Series: 
Scientific Areas: 
 

 

Thursday May 02, 2019
Speaker(s): 

Tensor Models provide one of the calculationally simplest approaches to defining a partition function for random discrete geometries. The continuum limit of these discrete models then provides a background-independent construction of a partition function of continuum geometry, which are candadates for quantum gravity. The blue-print for this approach is provided by the matrix model approach to two-dimensional quantum gravity. The past ten years have seen a lot of progress using (un)colored tensor models to describe state sums if discrete geometries in more than two dimensions.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Apr 18, 2019
Speaker(s): 

We derive Schwarzian correlation functions using the BF formulation of Jackiw-Teitelboim gravity, where bilocal operators are interpreted as boundary-anchored Wilson lines in the bulk. Crossing Wilson lines are associated with OTO-correlators and give rise to 6j-symbols. We discuss the semi-classical bulk black hole physics contained within the correlation functions.

Extensions including bulk defects related to the other coadjoint orbits are discussed.

Collection/Series: 
Scientific Areas: 

Pages