This series consists of talks in the area of Quantum Gravity.
Group field theories show up as a higher dimensional generalization of matrix models in background independent approaches to quantum gravity.
Their Feynman expansion generates simplicial complexes of all topologies weighted by spin foam amplitudes.
In this talk, we will present a dual formulation of these theories as non-commutative quantum fields theories, whose variables have a clear interpretation in terms of simplicial geometry. We will show that it gives a geometrically clear ways to define spin foam models for gravity which can be cast as
To study the continuum limit of a microscopic model of gravity we need microscopic observables that have a clear interpretation in terms of continuum geometry. In general the construction of such observables is notoriously difficult. In the model of causal dynamical triangulations (CDT) it is clear what the microscopic observables are, but at present the only known well-behaved observables with a continuum interpretation are spatial volumes.
Entanglement is a paradigmatic example of quantum correlations, a presumed reason for the superior performance of quantum computation and an obvious divider of states and processes into classical and quantum. In the last decade all these notions were challenged. Entanglement does not capture the totality of non-classical behavior. Quantum discord (in its different versions) is a more general measure of quantum correlations. It can be related to the advantage in some tasks like the extraction of work from a Szilrad heat engine using Maxwell's demons with various resources.
We construct the q-deformed spinfoam vertex amplitude using Chern-Simons theory on the boundary 3-sphere of the 4-simplex. The rigorous definition involves the construction of Vassiliev-Kontsevich invariant for trivalent knot graph. Under the semiclassical asymptotics, the q-deformed spinfoam amplitude reproduce Regge gravity with cosmological constant at nondegenerate critical configurations.
In general relativity, the fields on a black hole horizon are obtained from those in the bulk by pullback and restriction. In quantum gravity, it would be natural to obtain them in the same manner. This is not fully realized in the quantum theory of isolated horizons in loop quantum gravity, in which a Chern-Simons phase space on the horizon is quantized separately from the bulk. I will outline an approach in which the quantum horizon degrees of freedom are simply components of the quantized bulk degrees of freedom.
I briefly introduce the recently introduced idea of relativity of locality, which is a
consequence of a non-flat geometry of momentum space. Momentum space
can acquire nontrivial geometrical properties due to quantum gravity effects.
I study the relation of this framework with noncommutative geometry, and the
Quantum Group approach to noncommutative spaces. In particular I'm interested
in kappa-Poincaré, which is a Quantum Group that, as shown by Freidel and Livine,
in the 1+1D case emerges as the symmetry of effective field theory coupled with
This talk will deal with a new connection formulation for higher-dimensional (Super)gravity theories and its applications. We will start by reviewing the basic ideas of loop quantum gravity. Next, the derivation of the new connection formulation will be discussed and it will be shown that the quantization methods developed in the context of loop quantum gravity apply. We comment on applications of the framework, focusing on making contact with String theory.
The parity invariance of spinfoam gravity is an open question. Naively, parity
breaking should reside in the sign of the Immirzi parameter. I show that the
new Lorentzian vertex formula is in fact independent of this sign, suggesting
that the dynamics is parity-invariant. The situation with boundary states and
operators is more complicated. I discuss parity-related pieces of the
transition amplitude and graviton propagator in the large-spin 4-simplex
limit. Numerical results indicate patterns similar to those in the Euclidean
The fluid/gravity correspondence relates hydrodynamic flows in D spacetime dimensions to black hole dynamics in D+1 dimensions. It is an extension of black hole thermodynamics, where charges are upgraded into local currents, and the Bekenstein-Hawking entropy - into a local entropy current. I will propose a definition for a generalized local current of Wald entropy relevant to higher-curvature gravity. As an example, I will consider 5d gravity with a U(1) gauge field and a gravitational Chern-Simons term.