This series consists of talks in the area of Quantum Gravity.
In the first part of the talk, I will describe the new large N limit of tensor models, based on the “index” of graphs (in contrast to the standard large N expansion based on the “degree”), and the associated new large D limit of matrix models. This new limit sheds an interesting light on the relation between disordered models à la SYK, tensor models and black holes. In the second part of the talk, I will apply these ideas to discuss the phase diagrams of some strongly coupled matrix quantum mechanics.
In this talk, I will summarize the status of the numerical evaluation of spin foam amplitudes focusing on the Lorentzian EPRL-FK model. I will illustrate how numerical methods can lift some limitations of the theory helping us understand better its continuum and semi-classical limit.
We argue that in quantum gravity there is no stable equilibrium state corresponding to the Born rule. Our main argument rests on the continued controversy over the physical meaning of the Wheeler-DeWitt equation. We suggest that attempts to interpret it are hampered by the conventional assumption that probabilities should be governed by a fixed Born rule. It is possible to abandon this assumption in a de Broglie-Bohm interpretation.
Singularities, boundary points of spacetime beyond which no extension is possible, continue to intrigue both mathematicians and physicists since they are places where our current understanding of physical law breaks down. The question of whether they exist in physical situations is still an open one. Fifty years ago, Hawking and Penrose developed the first general model independent singularity theorems. These theorems showed that singularities have to exist in any spacetime that satisfies certain properties.
Although entanglement harvesting was first posited over 25 years ago, it is only in recent years that this phenomenon has been the subject of active study. The basic idea of entanglement harvesting is to transfer correlations from the vacuum of some quantum field to a pair of detectors. The result provides a new probe of the structure of spacetime via quantum correlations. I shall describe recent work on some of the first results in harvesting entanglement in curved spacetime, in particular anti de Sitter spacetime and black holes.
In both Causal Set Quantum Gravity as well as in the String Landscape, we face the challenging tasks of sifting through large state spaces and searching for the set of solutions which best model our physical universe. I demonstrate in this talk how efficient parallel algorithms can give us access to areas of physics previously unstudied due to computational barriers. I first present new methods to accelerate the evolution of causal set Markov chains, which enables us to look for the spontaneous emergence of manifoldlike structure.
TBA In the framework set by the AdS/MERA conjecture, we investigate a generalisation of the Tensor Network description of bulk geometry in the language of Group Field Theories, a promising convergence of insights and results from Matrix Models, Loop Quantum Gravity and simplicial approaches. We establish a first dictionary between Group Field Theory and Tensor Network states. With such a dictionary at hand, we target the calculation of the Ryu-Takayanagi formula recently derived for Random Tensor Networks in the quantum gravity formalism.
In this talk I will discuss issues and possibilities to outline Quantum Gravity Phenomenology using cosmological and astrophysical data. After a brief review on some formal aspect of the problem I will focus on the analysis of in-vacuo dispersion features for GRB (gamma-ray-burst) neutrinos of energy in the range of 100 TeV, and for GRB photons with energy in the range of 10 GeV. I will introduce a strategy of data analysis which has the advantage of being applicable to several alternative possibilities for the laws of propagation of neutrinos and other particles in a quantum spacetime.
In this talk, I will show that light cones in MInkowski spacetime are a beautiful analoue of black hole horizons in curved spacetime. To do so, I will prove the analogue of the four laws of black hole thermodynamics in this setting. This is what we called light cone thermodynamics. More precisely, I will consider null surfaces defined by the out-going and in-falling wave fronts emanating from and arriving at a sphere in Minkowski spacetime. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers.
Compatibility of asymptotic safety with UV-completions of matter theories may constrain the underlying microscopic dynamics of quantum gravity. Within truncated RG-flows, a weak-gravity bound originates from the loss of quantum scale-invariance in the matter system. Further constraints could arise when linking Planck-scale to electroweak-scale dynamics. Within the constrained region, gravitationally induced scale-invariance could UV-complete the Standard Model, and moreover explain free parameters such as fermion masses and gauge couplings.