This series consists of talks in the area of Quantum Fields and Strings.
The near horizon region of any black hole looks like flat space and displays an approximate Poincare symmetry. We study the way these symmetries are realized for near extremal black holes.
Defects and their RG flows play an important role in many systems, with perhaps the most famous example being the Kondo effect. We study Kondo-like interface flows in D1/D5 holography from the point of view of both probe branes and of the corresponding backreacted supergravity solutions.
I will discuss the computation of second-order terms in the entanglement entropy and subregion complexity for a spherical entangling region in the AdS black hole background relative to pure AdS. I will suggest an extension of the conjectured relationship between subregion complexity and Fisher information into a relation that is reminiscent of the first law of thermodynamics. By analogy, entanglement and complexity play the roles of heat and work, respectively. Time permitting, I will also discuss the computation of third- and fourth-order terms in the relative entropy.
I will give an overview of recent results on three-dimensional N=2 supersymmetric gauge theories placed on arbitrary half-BPS geometries. In particular, I will explain an explicit computation of the supersymmetric partition function on any Seifert three-manifold; such manifolds can have very intricate and interesting topology (for instance, a nice example is the Poincaré sphere) and can provide new interesting observables in 3d SCFTs.
Magnetohydrodynamics (MHD) describes the low-energy physics of electromagnetically conducting plasmas. In the conventional formulation of MHD, one introduces dynamical electromagnetic fields on top of the usual hydrodynamic setup by hand. In this talk, we will explore an alternate effective view of MHD purely based on symmetries, as a "string fluid" of magnetic field lines, without any assumption about the underlying microscopic field content. We will argue that MHD is described by a novel theory of superfluidity with a partially broken one-form symmetry.
I will give a holographic argument in favor of the AdS Penrose inequality, which conjectures a lower bound on the total mass in terms of the area of apparent horizons. This inequality is often viewed as a test of cosmic censorship. Time permitting, I’ll also discuss a generalization to charged black holes and connections with a quasi-local energy and the second law for apparent horizons.
In the first part of the talk, I will mention the ongoing numerical efforts using lattice calculations to understand the holographic dualities relating the super Yang-Mills (SYM) theories in various dimensions and their conjectured Type II supergravity theories in the decoupling limit. In the second part, I will discuss the tensor renormalization group study of the SU(2) gauge-Higgs model in two dimensions using the higher-order tensor renormalization group (HOTRG) algorithm and compare the results with the Monte Carlo simulations.
It is known that there is a relationship between conformal Carroll transformations and BMS symmetry. In this talk I will explore the geometry of generic Carroll structures which may be thought of as the basic underlying geometric structure on null hypersurfaces. A Carroll structure can be thought of as a fibre bundle with Ehresmann connection, and one finds that (generalized) BMS symmetry emerges as the conformal symmetry of this bundle and connection. I’ll briefly also describe how this story fits into the physics of ’soft modes.’
An assessment of the particle standard model and an alternative formulation of
the model are presented. An ultraviolet complete particle model is constructed
for the observed particles of the standard model. The quantum field theory
associates infinite derivative entire functions with propagators and vertices, which
make perturbative quantum loops finite and maintain Poincaré invariance and
unitarity of the model. The electroweak model SU(2) X U(1) group is treated as a
broken symmetry group with non-vanishing experimentally determined boson
Motivated by recent interesting holographic results, several attempts have been made to study complexity ( rather " Circuit Complexity") for quantum field theories using Nielsen's geometric method. But most of the studies so far have been limited to free quantum field theory. In this talk we will take a baby step towards understanding the circuit complexity for interacting quantum field theories. We will consider \lambda \phi^4 theory and discuss in detail how to set up the computation perturbatively in coupling.