This series consists of talks in the area of Quantum Fields and Strings.
I will present a new area law in General Relativity. This new area law holds on local analogues of event horizons that have an independent thermodynamic significance due to the Bousso bound. I will also discuss a quantum generalization of this more local notion of thermodynamics.
We compute the scaling dimensions of a large class of disorder operators ("monopoles") in the planar limit of CS-fermion theories. The lightest such operator is shown to have dimension (2/3) k^{3/2}, where k is the CS level. The computation is based on recently developed techniques for solving CS-matter at all 't Hooft couplings, and the operator dimensions are obtained by finding complex saddles in the low-temperature phase of the CS-fermion path integral in a monopole background. We will also discuss the implications of this result to 3D bosonization dualities.
We construct a new model of four-dimensional relativistic strings with integrable dynamics on the worldsheet. In addition to translational modes this model contains a single massless pseudoscalar worldsheet field - the worldsheet axion. The axion couples to a topological density which counts the self-intersection number of a string. The corresponding coupling is fixed by integrability to Q=716π−−−√≈0.37. We argue that this model is a member of a larger family of relativistic non-critical integrable string models.
Some 5d gauge theories have a 6d N=(1,0) SCFT as their UV completion. Given such 5d gauge theory we desire to determine its 6d UV completion. In this talk, I will present a method to do this for 5d gauge theories that can be engineered in string theory by brane webs. This can then be applied to study compactification of 6d N=(1,0) SCFT's on a torus.
In this talk, I will present some new torsional local models for heterotic strings constructed from twistor geometry. These models include the resolved conifold O(-1,-1) as a special example.
We consider 4d N=1 superconformal theories on a cylinder. The partition function on this geometry computes the superconformal index, and can be obtained via the path integral with time direction compactified on a circle and periodic conditions for fermions. We will describe universal formulas for the asymptotics of such partition functions in the limit of very large circle and of very small circle. These limits are completely fixed in terms of coefficients of the Weyl anomaly (a,c).
The gauged linear sigma model (GLSM) with (0,2) supersymmetry is an excellent tool for generating solutions of the heterotic string. In this talk, I will review a novel mechanism within the (0,2) GLSM for producing target spaces with H-flux, and explore several examples of this type. Along the way, a remarkable relationship between (0,2) gauge anomalies and H-flux will emerge. We will also see hints that many of these spaces require a stringy notion of geometry.
Quantum field theory on curved space has long been studied for its interesting phenomenology, and more recently also as a means to obtain non-perturbative results in supersymmetric theories. In this talk I will describe the holographic dual for N=4 SYM coupled to massive N=2 flavors on spaces of constant curvature. With that in hand, I will discuss a topology-changing phase transition on S^4 and confront holographic computations with exact field theory results obtained using supersymmetric localization.
We consider quantum quench from a gapped to a gapless system in 1+1 dimensions. We
provide a rigorous proof of the thermalization of the reduced density matrix, hence that of
an arbitrary string of local operators in an interval. In case the system is integrable, the "thermalization" leads to a generalized Gibbs ensemble (GGE). We model the critical quench in terms of an initial state in terms of a conformal boundary state deformed by exponential cutoffs involving hamiltonian and other charges. We justify this choice of the initial state by explicitly