This series consists of talks in the area of Quantum Fields and Strings.
Quantum complexity is conjectured to probe inside of black hole horizons (or wormhole) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for generic Abelian pure gauge theories. For this purpose, we discretize U(1) gauge group as Z_N and also continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories, and evaluate time evolutions of the complexities explicitly.
IT from Qubit web seminar
Abstract TBA
We study the boundary conditions in the topologically twisted Chern-Simons matter theories with the Lie 3-algebraic structure. We find that the supersymmetric boundary conditions and the gauge invariant boundary conditions can be unified as the complexified gauge invariant boundary conditions which lead to the supergroup WZW models.
We will discuss some expectations regarding properties of N=1 SCF
The AdS/Ricci-flat (AdS/RF) correspondence is a map between families of asymptotically locally AdS solutions on a torus and families of asymptotically flat spacetimes on a sphere. In this talk I will discuss how to relax these restrictions for linearized perturbations around solutions connected via the original AdS/RF correspondence.
I discuss a string theoretic approach to integrable lattice models. This approach provides a unified perspective on various important notions in lattice models, and relates these notions to four-dimensional N = 1 supersymmetric field theories and their surface operators. I explain how my construction connects to Costello's work and the Nekrasov-Shatashvili correspondence.
The properties of physical processes reflect themselves in the structure of the relevant observables. This idea has been largely exploited for the flat space S-matrix, whose analytic structure is determined by locality and unitary, the two pillars which our current understanding of nature is based on. In this context, it has been possible to find new mathematical structures whose properties turn out to be the ones we ascribe to scattering processes in flat-space, so that both unitarity and locality can be viewed as emergent from some more fundamental structure.
The talk will review the computation of the three point function of gauge-invariant operators in the planar N=4 SYM theory using integrability-based methods. The structure constant can be decomposed, as proposed by Basso, Komatsu and Vieira, in terms of two form-factor-like objects (hexagons). The multiple sums and integrals implied by the hexagon decomposition can be performed in the large-charge limit, and be compared to the results obtained by semiclassics. I will discuss a method to perform these sums and the contributions currently accessible by this approach.
I will introduce the spectral function method in the context of conformal bootstrap. I will discuss some applications of this method in two dimensions: (1) substantial evidence for the conjecture that the only unitary c>1 CFT with Virasoro primaries of bounded spin is Liouville theory, (2) detailed modular constraints on the spectrum of small c CFTs, (3) spectral density of large c CFTs with large gap, in connection to the (non-)universality of BTZ black hole entropy.