Perimeter Institute Public Lecture Series

Perimeter Institute brings great thinkers from around the world to Canada to share their ideas on a wide variety of interesting and topical subjects. These lectures and debates are aimed at non-specialists. No mathematical or scientific knowledge is necessary or assumed. Each event is explicitly tailored for the general public and everyone is welcome to attend.

 

Wednesday Jun 03, 2009
Speaker(s): 

Astronomers believe our Universe began in a Big Bang, and is expanding around us. Brian Schmidt will describe the life of the Universe that we live in, and how astronomers have used observations to trace our Universe's history back more than 13 Billion years. With this data a puzzling picture has been pieced together where 96% of the Cosmos is made up of two mysterious substances, Dark Matter and Dark Energy.

Scientific Areas: 

 

Wednesday Apr 01, 2009
Speaker(s): 

Black holes are regions of space with gravity so strong that nothing can escape from them, not even light. This isn't science fiction - there's even a gigantic black hole at the center of our galaxy. It's hard to imagine a more effective way to irrevocably erase and destroy a computer's hard drive than to drop it into a nice big black hole. But is the information on that drive really gone forever? Paradoxically, there's a good chance that not only does the information come back, it comes back in the blink of an eye.

Scientific Areas: 

 

Wednesday Nov 05, 2008
Speaker(s): 

Our present Core Theory of matter (aka “standard model”) was born in the 1970s, a Golden Age for fundamental physics. To date it has passed every experimental test, extending – by many orders of magnitude – to higher energies, shorter distances, and greater precision than were available in the 1970s. Yet we are not satisfied, because the Core Theory postulates four separate interactions and several different kinds of matter, and its equations are lopsided. In this lecture, Prof.

 

Wednesday Oct 01, 2008
Speaker(s): 

There is now a great deal of evidence confirming the existence of a very hot and dense early stage of the universe. Much of this data comes from a detailed study of the cosmic microwave background (CMB) - radiation from the early universe that was most recently measured by NASA\'s WMAP satellite. But the information presents new puzzles for scientists. One of the most blatant examples is an apparent paradox related to the second law of thermodynamics. Although some have argued that the hypothesis of inflationary cosmology solves some of the puzzles, profound issues remain.

 

Wednesday Jun 04, 2008

At the beginning of the 20th century Einstein published three revolutionary ideas that changed forever how we view Nature. At the beginning of the 21st century Einstein\'s thinking is shaping one of the key scientific and technological wonders of contemporary life: atomic clocks, the best timekeepers ever made. Such super-accurate clocks are essential to industry, commerce, and science; they are the heart of the Global Positioning System (GPS), which guides cars, airplanes, and hikers to their destinations.

 

Wednesday May 07, 2008
Speaker(s): 


In the recent past, rapid scientific and technological developments have had tremendous impact on human society. Notably, the personal computer, internet and mobile telephones changed the world and shrank our planet. These developments are vastly different from the forecasts by science fiction authors who promised us space travel and intelligent humanoid robots. Could real scientists have done a better job in forecasting the future? What can we say about the future now?


 

Wednesday Apr 02, 2008
Speaker(s): 


Probabilities and randomness arise whenever we're not sure what will happen next.  They apply to everything from lottery jackpots to airplane crashes; email spam to insurance policies; medical studies to election polls. This exploration of odds and oddities will explain how a Probability Perspective can shed new light on many familiar situations in our everyday lives, and how computer algorithms which use randomness can be used to address problems in many branches of science.


 

Wednesday Mar 05, 2008
Speaker(s): 

The evidence that the universe emerged 14 billion years ago from an event called \'the big bang\' is overwhelming. Yet the cause of this event remains deeply mysterious. In the conventional picture, the \'initial singularity\' is unexplained. It is simply assumed that the universe somehow sprang into existence full of \'inflationary\' energy, blowing up the universe into the large, smooth state we observe today. While this picture is in excellent agreement with current observations, it is both contrived and incomplete, leading us to suspect that it is not the final word.

Scientific Areas: 

Pages