Effective Field Theory and Gravitational Physics Conference
Recent years have seen the paradigm of effective field theory (EFT) successfully applied to an increasing number of classical systems that range from the gravitational inspiral of compact binaries to hydrodynamics. Many of these systems exhibit dissipation in one form or another, such as radiation reaction or viscous fluid flow, that naturally results from the system being open. This "openness" can manifest as energy leaving the dynamical variables of interest via radiation or heat transfer, for example.
After the first landmark gravitational-wave (GW) detection, GW astronomy will turn to the study of detector data to identify the physical properties of GW sources. The science payoff of GW observations must therefore depend critically on the accurate knowledge of the shapes of waveforms as functions of the source parameters. Effective-field-theory techniques have advanced and continue to advance the state of the art for the modeling of inspiraling-binary dynamics. But how far do we have to push our calculations to satisfy the needs of observations?