This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
Existence of dark energy and nonzero nu mass are two most exciting discoveries of recent years. More excitingly, the similarity between the energy scales of these two raise the question: "Are they related?" I will explore how such connection could be there in nature and its cosmological consequences mainly in structure formation.
It will be shown that eternal inflation of the random walk type is generically absent in the brane inflationary scenario. Eternal inflation will be analysed both in the context of KKLMMT and the DBI inflationary models. A Langevin analysis will be employed for a more careful treatment. The DBI action, and the relativistic nature of the brane motion in DBI inflationary model, leads to new subtleties in formulating a Langevin approach.
TBA
The initial conditions for structure formation, and hence the dark matter distribution on sub-galactic scales, depend on the microphysics of the dark matter in the early Universe. I will focus on WIMPs and explain how collisional damping and free-streaming erase perturbations on comoving scales k> ~1/pc. Consequently the first structures to form in the Universe are mini-halos with mass of order the Earth. I will then describe the status of calculations of the subsequent dynamical evolution of these mini-halos. Finally, if time permits, I'll briefly overview the microphysics of axions.
If low-scale supersymmetry exists in nature, then it it will be very likely that a number of superpartners will be discovered at the LHC. It is also very likely, however, that much of the supersymmetric spectrum will go unobserved, leaving many important holes in our understanding of the TeV scale. Direct and indirect astrophysical probes of neutralino dark matter can enable for some of these holes to be filled.
Realizations of inflation in string theory hold the promise of connecting the theory to observational tests, and at the same time providing new insights for field theory models of inflation. I will report on progress towards realizing inflation on D-branes in type IIB string theory. Moduli stabilization effects generically lead to an eta problem in this scenario, and to analyze the model it is necessary to compute a particular correction to the nonperturbative effects arising on wrapped D-branes.
I argue that all necessary ingredients for successful inflation are
present in the minimal supersymmetric standard model (MSSM). The potential for the supersymmetric flat directions (which can be viewed as moduli near
I will demonstrate how one can realize Cascade inflation in M-theory. Cascade inflation is a realization of assisted inflation which is driven by non-perturbative interactions of N M5-branes. Its power spectrum possesses three distinctive signatures: a decisive power suppression at small scales, oscillations around the scales that cross the horizon when the inflaton potential jumps and stepwise decrease in the scalar spectral index. All three properties result from features in the inflaton potential.
In this talk I will discuss some aspects of graviton production by moving branes. After a brief introduction to braneworld cosmology I will focus on braneworlds in a five-dimensional bulk, where cosmological expansion is mimicked by motion through AdS_5. The moving brane acts naturally as a time-dependent boundary for the five-dimensional graviton (five-dimensional tensor perturbations) leading to graviton production out of quantum vacuum fluctuations. This effect is related to the so-called dynamical Casimir effect, i.e.