Cosmology & Gravitation

This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Tuesday Jun 10, 2008
Speaker(s): 

In this talk I will analyse the stochastic background of gravitational waves coming from a first order phase transition in the early universe. The signal is potentially detectable by the space interferometer LISA. I will present a detailed analytical model of the gravitational wave production by the collision of broken phase bubbles, together with analytical results for the gravitational wave power spectrum. Gravitational wave production by turbulence and magnetic fields will also be briefly discussed.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 13, 2008
Speaker(s): 

Recent developments in the field of Numerical Relativity have not only provided key insights of binary black hole systems but also began influencing its future role. Undoubtedly one of the most important future drivers in the near future of the field will be its role as another element within the study of spectacular astrophysical phenomena involving strongly gravitation scenarios. Connecting (yet to be observed) gravitational waves with observations within the electromagnetic spectra will be one ultimate goal of this enterprise.

Collection/Series: 
Scientific Areas: 

 

Thursday May 08, 2008
Speaker(s): 

I will review relativistic quantum theory that is based on Wigner\'s unitary representations of the Poincare group, Dirac\'s forms of dynamics, and Newton-Wigner\'s definition of the position operator. Formulas will be derived that transform particle observables between different inertial reference frames. In the absence of interactions, these formulas coincide with Lorentz transformations from special relativity. However, when interaction is turned on, some deviations appear.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 06, 2008
Speaker(s): 

We study the effective field theory of inflation, i.e. the most general theory describing the fluctuations around a quasi de Sitter background, in the case of single field models. The scalar mode can be eaten by the metric by going to unitary gauge. In this gauge, the most general theory is built with the lowest dimension operators invariant under spatial diffeomorphisms, like g^{00} and K_{mu nu}, the extrinsic curvature of constant time surfaces.

Collection/Series: 
Scientific Areas: 

 

Monday May 05, 2008
Speaker(s): 

I will review an old (Greenberg and Schweber, 1958) and undeservedly forgotten idea in quantum field theory. This idea allows one to reformulate QFT as a Hamiltonian theory of physical (rather than bare) particles and their direct interactions. The dressed particle approach is scattering-equivalent to the traditional one, however it doesn\'t require renormalization and may provide a valuable tool for calculations of wave functions of bound states and time evolution.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 29, 2008
Speaker(s): 

Many string theorists and cosmologists have recently turned their attention to building and testing string theory models of inflation. One of the main goals is to find novel features that could distinguish stringy models from their field theoretic counterparts. This is difficult because, in most examples, string theory is used to derived an effective theory operating at energies well below the string scale.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 22, 2008
Speaker(s): 

We introduce a formalism allowing us to localize a certain class of theories with an infinite number of derivatives (nonlocal), which include effective actions of string field theory. The number of degrees of freedom is finite and the Cauchy problem, Hamiltonian and quantization are all well-defined. As applications, the rolling tachyon of cubic string field theory and some cosmological toy models are considered.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 08, 2008
Speaker(s): 

Pages