This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
The LHC will explore fundamental physics at a new energy frontier. A spectrum of new particles at the TeV scale is expected on two theoretical grounds: explaining dark matter and generating the electroweak scale. Understanding the properties of such particles can clarify the nature of dark matter, the origin of the weak scale, symmetries of nature, and the multiverse. These particles can be discovered by identifying collision events characteristic of new physics in LHC data.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20--70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of aP = (8.74 1.33) 1010 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is currently being investigated.
While the properties of gravity, and its consistency with General Relativity (GR), are well tested on solar system scales, within our system and the decay of binary pulsar orbits, they are, by comparison, poorly tested on cosmic scales. This is of particular interest as we try to understand the origins of cosmic acceleration, and whether they are a signature of deviations from GR.
Standard inflationary theory predicts that primordial fluctuations in the
The simplest gravity duals for quantum critical theories with 'Lifshitz' scale invariance admit a marginally relevant deformation. We will explore the holographic renormalization of such theories, including this deformation. Additionally we explore how this holographic renormalization illuminates the physics of black holes in the qunatum critical regime.
Scalar field models of early universe inflation are effective field theories, typically valid only up to some UV energy scale, and receive corrections through higher dimensional operators due to the UV physics. Corrections to the tree level inflationary potential by these operators can ruin an otherwise suitable model of inflation. In this talk, I will consider higher dimensional kinetic operators, and the corrections that they give to the dynamics of the inflaton field.
Most often, the dark matter puzzle is analyzed along a single perspective, thus trying to answer a single question. Either "what is the dark matter?", focusing on its microscopic nature, or "how is dark matter distributed in the universe?" focusing on the large scale structure of the universe, or still "how does it affect what we observe in the sky?". Both my scientific interests and some random fluctuations at the beginning of my career have conspired so that I would take on projects in all these fields.
The basic structure of quantum mechanics was delineated in the early days of the theory and has not been modified since. Still it is interesting to ask whether that basic structure can be altered or generalized. In the last decade Bender et al have shown that one of the fundamental assumptions of quantum mechanics, that operators are represented by Hermitian matrices, can to an extent be relaxed. In this theory, the parity (P) and time-reversal (T) operators play a role analogous to the Hermitian conjugate.
It is a prime interest to understand gravitational physics and to develop cosmological applications exploiting the next generation of surveys, scheduled to be launched in the near future, such as SDSS3, DES, XCS, JDEM or EUCLID. The future precision surveys are promising to resolve outstanding problems in modern physics. With the level of precision available in future surveys, we can use the high resolution maps expected to be gained from next-generation surveys to test the foundations of gravity and particle physics.
Although the observational evidence for cosmological inflation is growing, the physical mechanism behind it is still unknown. In part this is because inflation probably occurred at energy scales many orders of magnitude higher than that at man-made or astrophysical particle accelerators. So how can we learn about inflation? How does it constrain microphysical theory? One approach to answering these questions is primarily theoretical: attempting to embed inflation in fundamental theories of quantum gravity, such as string theory.