This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
A modified version of PQCD considered in previous works is further investigated in the case of a vanishing gluon condensate, by retaining only the quark one. In this case the Green functions generating functional is expressed in a simple form in which Dirac’s delta functions are now absent from the free propagators. The new expansion implements the dimensional transmutation effect through a single interaction vertex in addition to the standard ones in mass less QCD. The results of an ongoing two loop evaluation of the vacuum energy will be presented.
The great advances in observational cosmology in the last few years have delivered us an unprecedented amount of new data. They begin to indicate with confidence that in the past our universe underwent a phase of acceleration, called inflation, and that it is currently undergoing a similar phase, usually thought of as a consequence of a cosmological constant. I will show how inflation can be probed, using to this purpose a very general effective field theory description.
The cosmological constant problem is arguably the deepest gap in our understanding of modern physics. The discovery of cosmic acceleration in the past decade and its surprising coincidence with cosmic structure formation has added an extra layer of complexity to the problem. I will describe how revisiting/revising some standard assumptions in the theory of gravity can decouple the quantum vacuum from geometry, which can potentially solve the cosmological constant problem.
The standard cosmological model features two periods of accelerated expansion: an inflationary epoch at early times, and a dark energy dominated epoch at late times. These periods of accelerated expansion can lead to surprisingly strong constraints on models with extra dimensions. I will describe new mathematical results which enable one to reconstruct features of a higher-dimensional theory based on the behaviour of the accelerating four-dimensional cosmology. When applied to inflation, these results pose several interesting questions for the construction of concrete models.
Weak lensing has emerged as a powerful probe of fundamental physics such as dark energy and dark matter. After briefly reviewing the standard argument for the power of lensing, I present a variety of surprises: some quantities that are supposedly simple measures of cosmic shear are actually polluted by other effects and some quantities apparently unrelated to lensing are contaminated by lensing. These effects may lead to opportunities to strengthen the constraints lensing will place on dark energy.
If Dark Energy is dynamical, it would indicate the existence of new physics beyond the standard model coupled to gravity. I will argue that the best motivated models of this new physics are all tied to whatever resolves the cosmological constant problem, and discuss the cosmological implications of several proposals that have been put forward in this vein.
I will present three ideas about black holes and cosmology. First, I will discuss a way of understanding the simple patterns which emerge from the notoriously thorny numerical simulations of binary black hole merger, and some of the directions where this understanding may lead. Second, I will suggest a sequence of practical bootstrap tests designed to give sharp observational confirmation of the essential idea underlying the inflationary paradigm: that the universe underwent a period of accelerated expansion followed by a long period of decelerated expansion.
We consider a probe codimension-2 brane inflation scenario in a warped six-dimensional flux compactification. First, we stabilise the modulus of the model by means of a cap regularisation of the codimension-2 singularities of the background solution. Then, we discuss the cosmological evolution of the world-volume of a probe codimension-2 brane when it moves along the radial direction of the internal space. In order to have slow-roll inflation, one needs the warping of the internal space to be weak, in contrast to the recent string inflation constructions with strong warping.
I will compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. The number of collisions in our backward lightcone can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky.
I will report results from simulations of galaxy-scale dark halos of unprecedented numerical resolution. Convergence tests demonstrate detailed convergence for (sub)structures for over six decades in mass, enabling detailed forecasts of the expected dark matter signal both in Earth-bound direct-detection experiments as well as in indirect detection experiments which attempt to image dark matter annihilation radiation in gamma rays.