This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. In this talk I will describe an algorithm for accurately computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field.
The large-scale structure of the universe suggests that the physics underlying its early evolution is scale-free. In this talk, using a hydrodynamic approach, I will discuss how the scale-free principle restores predictive power and makes it possible to evaluate inflationary models and to compare them with alternative cosmologies.
We study the dynamics of a 2+1 dimensional relativistic viscous conformal fluid in Minkowski spacetime. Such fluid solutions arise as duals, under the "gravity/fluid correspondence", to 3+1 dimensional asymptotically anti-de Sitter (AAdS) black brane solutions to the Einstein equation. We examine stability properties of shear flows, which correspond to hydrodynamic quasinormal modes of the black brane. We find that, for sufficiently high Reynolds number, the solution undergoes an inverse turbulent cascade to long wavelength modes.
Recently there has been a successful non-linear covariant ghost-free generalization of Fierz-Pauli massive gravity theory, the dRGT theory. I will explore the cosmology in the decoupling limit of this theory. Furthermore, I will construct a Proxy theory to dRGT from the decoupling limit and study the cosmology there as well and compare the results. Finally, I will discuss the quantum consistency of the theory.
TBA
Within the Minimal Supersymmetric Standard Model (MSSM), LHC bounds suggest that scalar superpartner masses are far above the electroweak scale. Given a high superpartner mass, nonthermal dark matter is a viable alternative to WIMP dark matter generated via freezeout. In the presence of moduli fields nonthermal dark matter production is associated with a long matter dominated phase, modifying the spectral index and primordial tensor amplitude relative to those in a thermalized primordial universe.
There is good evidence that the universe underwent an epoch of accelerated expansion sometime in its very early history, and that it is entering a similar phase now. This talk is in two parts. The first part describes what I believe to be the take-home message about inflationary models, coming both from the recent Planck results and from attempts to embed inflation within a UV completion (string theory). I will argue that both point to a particularly interesting class of inflationary models that also evade many of the tuning problems of inflation.
I will present Cosmological FRW Solutions in BiGravity Theories and discuss their stability. After deriving the stability bound, one realizes that in Bigravity (in contradistinction to the FRW massive gravity case) the tension between requirements stemming from stability and those set by observations is resolved. The stability bound can also be derived in the decoupling limit of Bigravity. In this context an intriguing duality between Galilean interactions has emerged.
After multiple high precision detections (ACT, SPT, Planck) gravitational lensing has become a new source of relevant cosmological information: combining it with other probes (e.g. the large scale structure) can give significant insight on the evolution of the Dark Energy component. Developing new algorithms of estimate of this signal will allow the community to exploit this observable as a new and independent probe in cosmology.
It has been suggested that recent cosmological and
flavor-oscillation data favor the existence of additional neutrino species
beyond the three standard flavors. We apply Bayesian model selection to
determine whether there is any evidence from current cosmological datasets for
the standard cosmological model to be extended to include additional neutrino
flavors. The datasets employed include cosmic microwave background temperature,
polarization and lensing data, and measurements of the baryon acoustic