This series consists of talks in the area of Condensed Matter.
The structure of entanglement can yield new physical insights into strongly interacting quantum critical states. I’ll describe key properties of the entanglement entropy of conformal field theories (CFTs) in 2+1d. In particular, we’ll see that sharp corners in the entangling surface contribute a regulator-independent function that depends non-trivially on the corner angle. I’ll argue that in the smooth limit this function yields the 2-point function of the stress tensor.
Fathoming interplay between symmetry and topology of many-electron wave-functions has deepened understanding of quantum many body systems, especially after the discovery of topological insulators. Topology of electron wave-functions enforces and protects emergent gapless excitations, and symmetry is intrinsically tied to the topological protection in a certain class. Namely, unless the symmetry is broken, the topological nature is intact.
Based on first-principle calculations, we show that a family of nonmagnetic materials including TaAs, TaP, NbAs, and NbP are Weyl semimetals (WSM) without inversion centers. We find twelve pairs of Weyl points in the whole Brillouin zone (BZ) for each of them. In the absence of spin-orbit coupling (SOC), band inversions in mirror-invariant planes lead to gapless nodal rings in the energy-momentum dispersion. The strong SOC in these materials then opens full gaps in the mirror planes, generating nonzero mirror Chern numbers and Weyl points off the mirror planes.
We studied a holographic superconductor model with a momentum relaxation by employing a linear massless scalar field, which is expected to play a role of impurity via holographic correspondence. By fixing a ratio of impurity/chemical potential, we observed the complex scalar field condensation depending on temperature and computed an electric, thermoelectric, and thermal conductivities.
Long-range quantum entanglement is now being recognized as a key characteristic of many novel states of quantum matter. The description of this entanglement requires the introduction of emergent “gauge fields”, much like those found in Maxwell’s theory of light. I will highlight some recent experiments on the copper-based high temperature superconductors, and interpret them using theories of emergent gauge fields.
We introduce the spectrum bifurcation renormalization group (SBRG) as an improvement of the excited-state real space renormalization group (RSRG-X) for qubit models. Starting from a disordered many-body Hamiltonian in the full many-body localized (MBL) phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local integrals of motion and the matrix product state representations for all eigenstates.
We investigate the properties of Chern-Simons theory coupled to massive fermions at finite density. In the large N limit, this is solvable to all orders in the coupling and we use this as a playground for investigating the behavior of strongly correlated condensed matter systems. At low temperatures the system enters a Fermi liquid state whose features may be compared to the phenomenological theory of Landau Fermi liquids and our analysis indicates the need to augment this framework to properly characterize parity odd transport.
We present an effective Z2 gauge theory that captures various competing phases in spin-1/2 kagome lattice antiferromagnets: the topological Z2 spin liquid (SL) phase, and the 12-site and 36- site valence bond solid (VBS) phases. Our effective theory is a generalization of the recent Z2 gauge theory proposed for SL phases by Wan and Tchernyshyov. In particular, we investigate possible VBS phases that arise from vison condensations in the SL.
In recent years, entanglement has become a new frontier with applications across several fields in physics. Nevertheless, simple conceptual pictures and practical ways to quantify entanglement in many-body systems have remained elusive even for the simplest models. In this talk, I will consider entanglement and Renyi entropies as well as quantum (mutual, tripartite, etc.) information in a quantum field theory.
Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics.