This series consists of talks in the area of Condensed Matter.
The scaling of entanglement entropy, and more recently the full entanglement spectrum, have become useful tools for characterizing certain universal features of quantum many-body systems.
The multiscale entanglement renormalization ansatz can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat spacelike boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains.
We consider the effect of an in-plane current on the magnetization dynamics of a quasi-two-dimensional spin-orbit coupled nanoscale itinerant ferromagnet. By solving the appropriate kinetic equation for an itinerant electron ferromagnet, we show that Rashba spin-orbit interaction provides transport currents with a switching action, as observed in a recent experiment (I. M.
Miron et al., Nature 476, 189 (2011)). The dependence of the effective switching field on the magnitude and direction of an external magnetic field in our theory agrees well with experiment.
Many-body entanglement, the special quantum correlation that exists among a large number of quantum particles, underlies interesting topics in both condensed matter and quantum information theory. On the one hand, many-body entanglement is essential for the existence of topological order in condensed matter systems and understanding many-body entanglement provides a promising approach to understand in general what topological orders exist.
I will describe our recent work on a new topological phase of matter: topological Weyl semimetal. This phase arises in three-dimensional (3D) materials, which are close to a critical point between an ordinary and a topological insulator. Breaking time-reversal symmetry in such materials, for example by doping with sufficient amount of magnetic impurities, leads to the formation of a Weyl semimetal phase, with two (or more) 3D Dirac nodes, separated in momentum space.
Topology has many different manifestations in condensed matter physics. Real space examples include topological defects such as vortices, while momentum space ones include topological band structures and singularities in the electronic dispersion. In this talk, I will focus on two examples. The first is that of a vortex in a topological insulator that is doped into the superconducting state. This system, we find, has Majorana zero modes and thus, is a particularly simple way of obtaining these states.
Dualities in physics are well known for their conceptual depth and quantitative predictive power in contexts where perturbation theory is unreliable. They are also remarkable for the staggering arrange of physical problems that exploit them, ranging from the study of confinement and unconventional phases in statistical mechanics and field theory to the unification of the string theory landscape.
Weak topological insulators have an even number of Dirac cones in their surface spectrum and are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states, rather, the presence of a time-reversal symmetric mass term is required for localization.
We report on our recent progress to investigate materials classes exhibiting d+id superconductivity, where topologically nontrivial pairing phases can emerge. Specifically, motivated by recent experimental progress, we show that graphene doped to the van Hove regime can give rise to a plethora of interesting ordering instabilities such as spin density wave and superconductivity.
It has been well-known that topological phenomena with fractional excitations, i.e., the fractional quantum Hall effect (FQHE) will emerge when electrons move in Landau levels. In this talk, I will show FQHE can emergy even in the absence of Landau levels in interacting fermion models and boson models. The non-interacting part of our Hamiltonian contains topologically nontrivial flat band.