This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.
The Achilles\\\' heel of quantum information processors is the fragility of quantum states and processes. Without a method to control imperfection and imprecision of quantum devices, the probability that a quantum computation succeed will decrease exponentially in the number of gates it requires. In the last ten years, building on the discovery of quantum error correction, accuracy threshold theorems were proved showing that error can be controlled using a reasonable amount of resources as long as the error rate is smaller than a certain threshold.
The basic problem of much of condensed matter and high energy physics, as well as quantum chemistry, is to find the ground state properties of some Hamiltonian. Many algorithms have been invented to deal with this problem, each with different strengths and limitations. Ideas such as entanglement entropy from quantum information theory and quantum computing enable us to understand the difficulty of various problems.
As physicists, we have become accustomed to the idea that a theory\\\'s content is always most transparent when written in coordinate-free language. But sometimes the choice of a good coordinate system is very useful for settling deep conceptual issues. Think of how Eddington-Finkelstein coordinates settled the longstanding question of whether the event horizon of a Schwarzschild black hole corresponds to a real spacetime singularity or not.
After almost a century of observations, the ultra-high energy sky has finally displayed an anisotropic distribution. A significant correlation between the arrival directions of ultra-high cosmic rays measured by the Pierre Auger Observatory and the distribution of nearby active galactic nuclei signals the dawn of particle astronomy. These historic results have important implications to both astrophysics and particle physics.
The Cosmic Microwave Background (CMB) consists of a bath of photons
emitted when the universe was 380,000 years old. Carrying the imprint
of primordial fluctuations that seeded the formation of structure in
the universe, the CMB is one of the most valuable known tools for
studying the early universe. In our modern, post WMAP era, the utility
of studying temperature anisotropies in the CMB is clear and much of
the work has been done. I will describe two exciting new directions in
which the field is currently heading: small-scale secondary CMB
The Universe offers environments with extreme physical conditions that cannot be realized in laboratories on Earth. These environments provide unprecedented tests for extensions of the Standard Model. I will describe three such \"astrophysical laboratories\", which are likely to represent new frontiers in cosmology and astrophysics over the next decade. One provides a novel probe of the initial conditions from inflation and the nature of the dark matter, based on 3D mapping of the distribution of cosmic hydrogen through its resonant 21cm line.
This will be an introductory talk about Topological Quantum Computation. TQC is attractive because it is intrinsicaly decoherence free. We introduce the basic notions, such as non abelian anyons, quantum symmetries and topological order. A topologically ordered phase is a gapped phase in which the basic degrees of freedom are of a topological nature (denoted as anyons), charactetized by their fusion and braiding properties. If time permits possible implementations based on Quantum Hall systems will be discussed as well.
Laser cooling and precision spectroscopy provide powerful tools for exploring quantum measurement and metrology using atoms as sensors. In this talk I will discuss our ongoing work to bring together abstract ideas of quantum parameter estimation and concrete physical details of atom-photon interactions in the specific context of magnetometry. I will also present some new ideas on how laser probing of cold atoms could provide a basis for developing entanglement-enhanced spin gyroscopes.
The manifold of pure quantum states can be regarded as a complex projective space endowed with the unitary-invariant Fubini-Study metric.
The physical characteristics of a given quantum system can then be represented by a variety of geometrical structures that can be identified in this manifold.
This talk will review a number of examples of such structures as they arise in the state spaces of spin-1/2, spin-1, spin-3/2, and spin-2 systems, and various types of entangled systems, all of which have fascinating and beautiful geometries associated with them.
The role of outflows in global star formation processes has become hotly debated even as fundamental questions about the nature of these outflows continues to receive attention. In this talk I discuss both problems and new approaches to their resolution. Astrophysical outflows have always been a subject at the forefront of the numerical technologies and in the first act of the talk I introduce AstroBEAR, a new Adaptive Mesh Refinement MHD tool developed at Rochester for the study of star formation outflow issues.