Colloquium

This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Wednesday May 02, 2007
Speaker(s): 

The progress in neutrino physics over the past ten years has been
tremendous: we have learned that neutrinos have mass and change flavor. I will pick out one of the threads of the story-- the measurement of flavor oscillation in neutrinos produced by cosmic ray showers in the atmosphere, and its confirmation in long distance beam experiments. I will present the history, the current state of knowledge, and how the next generation of high intensity beam experiments will address some of the remaining puzzles.

Collection/Series: 

 

Wednesday Apr 25, 2007
Speaker(s): 

Among the possible explanations for the observed acceleration of the universe, perhaps the boldest is the idea that new gravitational physics might be the culprit. In this colloquium I will discuss some of the challenges of constructing a sensible phenomenological extension of General Relativity, give examples of some candidate models of modified gravity and survey existing observational constraints on this approach.

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 11, 2007
Speaker(s): 

The theory of strong interactions is an elegant quantum field theory known as Quantum Chromodynamics (QCD). QCD is deceptively simple to formulate, but notoriously difficult to solve. This simplicity belies the diverse set of physical phenomena that fall under its domain, from nuclear forces and bound hadrons, to high energy jets and gluon radiation.

Collection/Series: 

 

Wednesday Mar 28, 2007
Speaker(s): 

Shear viscosity is a transport coefficient in the hydrodynamic description of liquids, gases and plasmas. The ratio of the shear viscosity and the volume density of the entropy has the dimension of the ratio of two fundamental constants - the Planck constant and the Boltzmann constant - and characterizes how close a given fluid is to a perfect fluid. Transport coefficients are notoriously difficult to compute from first principles.

Collection/Series: 
Scientific Areas: 

 

Wednesday Mar 21, 2007
Speaker(s): 

Theories of physics beyond the Standard Model predict the existence of relativistic strings, either as composite objects, or as fundamental constituents of matter. If they were created in the Big Bang, they would very likely still be present in the universe today. This talk reviews the thirty year history of cosmic strings, and describes the latest work which finds intriguing hints in the Cosmic Microwave Background data that the universe is filled with string.

Collection/Series: 
Scientific Areas: 

 

Wednesday Mar 07, 2007
Speaker(s): 

Some of the speculations on new physics, beyond what is in the standard model are reviewed. Particular attention is paid to ideas that try to address the hierarchy puzzle, i.e., why is the weak scale so much smaller than the Planck scale. These new theories will be tested at the large hadron collider in the near future.

Collection/Series: 
Scientific Areas: 

 

Wednesday Feb 28, 2007
Speaker(s): 

tba

Collection/Series: 
Scientific Areas: 

 

Wednesday Feb 14, 2007
Speaker(s): 

Experimentalists at the Relativistic Heavy Ion Collider create exploding droplets of quark-gluon plasma, the stuff which filled the universe for the first microseconds after the big bang. I'll give one theorist's perspective on what we are learning about the properties of quark-gluon plasma from these experiments, including the conclusion that it is closer to an ideal liquid than to an ideal gas and the observation that it "quenches" high energy quarks ("jets") trying to plow through it.

Collection/Series: 

 

Wednesday Feb 07, 2007
Speaker(s): 

Soon after Quantum Chromodynamics (QCD) was shown to exhibit asymptotic freedom at short distances, it was realized that it might be possible to create a new form of matter at high temperatures (T „d 150 MeV) in which hadrons dissolve and quarks and gluons become locally deconfined. Experiments have been carried out for the last two decades attempting to create this new form of matter, called ¡§quark-gluon plasma¡¨ (QGP), via high-energy collisions of large nuclei.

Collection/Series: 

Pages