This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.
Condensed matter systems offer a unique opportunity to study "emergence".
Paul Dirac has been called ‘the first truly modern theoretical physicist’. In the latter part of his life, he was obsessed by the idea that the fundamental laws of nature must have mathematical beauty. This was ‘almost a religion to him’, he said. In this talk, I shall trace the origins of his fascination with this idea (going back to his school education) and question the account he gave of his contribution to quantum mechanics and field theory, which he often said emerged from his aesthetic perspective.
It's usually assumed that youtube is just for kittens, babies, and music videos. However, youtube is also the highest-traffic site on the internet and it turns out it's actually a darn good place to teach people about physics!
Cold atomic gases in optical lattices are emerging as excellent laboratories for testing models of strongly interacting particles in
condensed matter physics. It is possible to tune the interactions,
dimensionality, spin, statistics and a host of other variables in a
completely disorder free environment. This has opened up unique possibilities of mapping out phase diagrams of quantum models and
observing quantum phase transitions for the very first time. I will
discuss some of the challenges in this field.
Besides their experimental relevance in condensed matter and quantum information science, quantum spin systems are an interesting playground to study decoherence and quantum entanglement. Random matrices are used since the 50' to model quantum chaotic dynamics and complex quantum systems. I introduce new random matrix models which lead to explicit solutions for some simple open or closed quantum spin systems.
Ideas about information are pervasive, yet the fundamental nature and structure of information - if indeed it has one! - remains elusive. Work done from many different perspectives, including those of physics, biology, logic, computer science, statistics, and game and decision theory, has yielded insights into various aspects of information. Could there be a comprehensive, unified theory?
Correlations in quantum states are sometimes inaccessible if only restricted types of quantum measurements can be performed, an effect known as quantum data hiding. For example highly entangled states shared by two parties might appear uncorrelated if the parties can only measure locally their shares of the state and communicate classically with each other.
It is usually assumed that the quantum wave-particle duality can have no counterpart in classical physics. We were driven into revisiting this question when we found that a droplet bouncing on a vibrated bath could couple to the surface wave it excites. It thus becomes a self-propelled "walker", a symbiotic object formed by the droplet and its associated wave.
Low-temperature phases of strongly-interacting quantum many-body systems can exhibit a range of exotic quantum phenomena, from superconductivity to fractionalized particles. One exciting prospect is that the ground or low-temperature thermal state of an engineered quantum system can function as a quantum computer. The output of the computation can be viewed as a response, or 'susceptibility', to an applied input (say in the form of a magnetic field).
String theory, famously, has a great many ground states. So many, in fact, that some argue that we should seek information in the statistical properties of these vacua, or worse, argue that we should abandon string theory as a theory with predictive power. On the other hand, very few vacua are known that look like the observed world of particle physics. In this talk I will review this situation and show that there are realistic models at the tip of the distribution of vacua, where topological complexity is minimised.