This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.
Human monkeys are used to thinking about the problem of
choosing from a set of objects according to some desired, biased, probability
distribution. Just think about how you chose your partner(s). Even when it is
easy for you to do such a sampling, it can be difficult to do a quantum
sampling (Q-Sampling) of the same distribution. By Q-Sampling I mean the
creation of a coherent superposition of states of such objects whose amplitudes
are the (square roots of) of the specified distribution. In this talk I will
I'll explain a new connection between supersymmetric
gauge theories and the Yangian. The main result is that a twisted, deformed
version of the pure N=1 supersymmetric gauge theory is controlled by the
Yangian, in the same way that Chern-Simons theory is controlled by the quantum
group. This result is used to give an exact calculation, in perturbation
theory, of the expectation value of a certain net of n+m Wilson operators in
the deformed N=1 gauge theory. This expectation value coincides with the
The
holographic correspondence is a powerful duality between a quantum theory of
gravity and a quantum gauge theory in one lower space-time dimension. Higher
spin gravity theories, i.e. gravity theories that also contain (gauge) fields
of spins greater than 2, play a special role in holography. I will explain
consistent interacting higher spin gravity theories in anti-de Sitter space,
their duality with gauged conformal vector models, and their connection to
string theory.
I'll explain a new connection between supersymmetric
gauge theories and the Yangian. The main result is that a twisted, deformed
version of the pure N=1 supersymmetric gauge theory is controlled by the
Yangian, in the same way that Chern-Simons theory is controlled by the quantum
group. This result is used to give an exact calculation, in perturbation
theory, of the expectation value of a certain net of n+m Wilson operators in
the deformed N=1 gauge theory. This expectation value coincides with the
A
quantum spin liquid is a solid whose atoms have magnetic moments but, because
of quantum fluctuations, these moments fluctuate like a liquid even at zero
temperature. Two dimensional spin liquids have been suggested as a way to
produce high temperature superconductivity, and to build quantum computers. Just as helium is the only element which is a liquid at zero temperature,
2D spin liquids have been extremely difficult to find, despite decades of
effort, raising the question, do realistic spin liquids even exist?
The recent discovery
of the Higgs boson is a fundamental advance in particle physics. This talk
gives a theorist's perspective of the significance of this discovery. The Higgs
boson was proposed in the 1960s, but it is best understood in the context of
the quest to understand the weak interactions, which began with Fermi's theory
of weak interactions almost 80 years ago. This has led to three very different
paradigms for the structure of fundamental interactions at the TeV scale:
This talk will begin by discussing one by one the various
reasons why cosmologists today consider the big bang inflationary cosmology to
be the leading, if not proven, theory of the universe and
then explaining
why each of these reasons is flawed. This leads
naturally to the question: what is the alternative? Understanding the flaws helps point the way.
Non-perturbative effects are responsible for the
essential dynamical features of the four-dimensional gauge theories such as
QCD. The N=2 supersymmetric four-dimensional theories are an interesting
class of models in which non-perturbative computations can be carried out with
arbitrary precision using localization of the path integrals. I will explain
the new exact non-perturbative results and the relation to classical and
quantum integrable systems for a large class of N=2 supersymmetric QCD.
As black holes accrete surrounding gas, they often
produce relativistic, collimated outflows, or jets. Jets are expected to form
in the black hole vicinity making them powerful probes of strong-field gravity.
However, how jet properties are connected to black hole and accretion flow
properties has been unclear. Recent progress in computer simulations of black
hole accretion enables studies of jet formation in unprecedented detail. For
the first time, 3D general relativistic magnetohydrodynamic numerical
Matrix
models, random maps and Liouville field
theory are prime tools which connect
random
geometry and quantum gravity in two dimensions. The
tensor track is a new program to extend this
connection to higher dimensions through
the
corresponding notions of tensor models, colored
triangulations and tensor group field theories.