This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.
Rideout and Sorkin proposed a classical dynamics for causal sets based upon a sequential growth model. Comparing it with models for sequential growth in other systems, and with the dual goals of generating manifold-like causal sets and finding a quantum dynamics for them, we propose some modifications to their model. The resulting, admittedly speculative, proposal is a type of quantum random walk. We explore its properties in some simple cases.
We identify a new non-linear neutrino wake effect, due to the streaming motions of neutrinos relative to dark matter, analogous to the Tseliakhovich-Hirata effect. We compute the effect in moving background perturbation theory, compare to direct n-body simulations, and forecast its observability in current and future surveys. Depending on neutrino mass, this effect could be observable in upcoming surveys through a cross correlation dipole in lensing and galaxies.
We provide additional evidence that supersymmetrical quantum mechanical systems can contain a remarkable amount of information about supersymmetrical field
theories in greater than one dimension.
Equality of two mathematical objects is a seemingly simple and well-understood concept. In this talk, I will do three things to explain why this is a misconception: I will survey different notions of equality, explain how revising the notion of equality has led to an emerging alternative foundation of mathematics called "homotopy type theory", and try to convince you that thinking about equality is relevant to your research in quantum field theory, quantum gravity or quantum foundations.
I will review models of modified gravity in the infrared and show how extra degrees of freedom present in these theories get screened via the Vainshtein mechanism. That mechanism comes hand in hand with its own share of peculiarities: classical superluminalities, strong coupling and perturbative non-analyticity of the S-matrix to name a few.
Canadian glass artist and Renaissance man, John Paul Robinson, explores the mythic potential of science. Explaining that, “This is the idea that scientific discovery is changing our mythology by changing our understanding of the world and our place in it.” Backed with a firm understanding of the science he references, his sculptures poetically interpret such theoretical phenomena as wave particles, string mathematics and black holes.
Progress in physics and quantum information science motivates much recent study of the behavior of strongly-interacting many-body quantum systems fully isolated from their environment, and thus undergoing unitary time evolution. What does it mean for such a system to go to thermal equilibrium? I will explain the Eigenstate Thermalization Hypothesis (ETH), which posits that each individual exact eigenstate of the system's Hamiltonian is at thermal equilibrium, and which appears to be true for most (but not all) quantum many-body systems.
I will describe a proposal of an enlargement of the Standard Model based on a softly broken conformal symmetry. It contains the usual particles of the SM with right-chiral neutrinos and predicts two new particles: a scalar mixing with the usual Higgs and a naturally weakly coupled axion. I will argue that the Planck scale should be treated as a real physical scale and discuss the hierarchy problem and renormalization from this point of view.
John Bell has shown that the correlations entailed by quantum mechanics cannot be reproduced by a classical process involving non-communicating parties. But can they be simulated with the help of bounded communication? This problem has been studied for more than twenty years and it is now well understood in the case of bipartite entanglement. However, the issue was still widely open for multipartite entanglement, even for the simplest case, which is the tripartite Greenberger-Horne-Zeilinger (GHZ) state.
Quantum computers have the potential to solve certain problems dramatically faster than classical computers. One of the main quantum algorithmic tools is the notion of quantum walk, a quantum mechanical analog of random walk. I will describe quantum algorithms based on this idea, including an optimal algorithm for evaluating Boolean formulas and one of the best known algorithms for simulating quantum dynamics. I will also show how quantum walk can be viewed as a universal model of quantum computation.