Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In this talk I will describe a new link "invariant" (with certain wall-crossing properties) for links L in a three-manifold M, where M takes the form of a surface times the real line. This link "invariant" is constructed via a map, called the q-nonabelianization map, from the
Quasars are the most luminous objects in the universe powered by accretion onto supermassive black holes (SMBHs). They can be observed at the earliest cosmic epochs, providing unique insights into the early phases of black hole, structure, and galaxy formation. Observations of these quasars demonstrate that they host SMBHs at their center, already less than ~1 Gyr after the Big Bang.
We will argue that even with semiclassical gravity, it can be shown that a copy of all the information on a Cauchy slice resides near the boundary of the slice. We will first demonstrate this in asymptotically global AdS, and then in four-dimensional asymptotically flat space. We will then describe a physical protocol that can be used to verify this property at low-energies and within perturbation theory.
We reconsider the black hole firewall puzzle, emphasizing that quantum error-correction, computational complexity, and pseudorandomness are crucial concepts for understanding the black hole interior. We assume that the Hawking radiation emitted by an old black hole is pseudorandom, meaning that it cannot be distinguished from a perfectly thermal state by any efficient quantum computation acting on the radiation alone. We then infer the existence of a subspace of the radiation system which we interpret as an encoding of the black hole interior.
Abstract: Large N matrix quantum mechanics are central to holographic duality but not solvable in the most interesting cases. We show that the spectrum and simple expectation values in these theories can be obtained numerically via a `bootstrap' methodology. In this approach, operator expectation values are related by symmetries -- such as time translation and SU(N) gauge invariance -- and then bounded with certain positivity constraints. We first demonstrate how this method efficiently solves the conventional quantum anharmonic oscillator.
Abstract TBD
Measurements of gravitational lensing in the cosmic microwave background (CMB) allow the dark matter distribution to be mapped out to uniquely high redshifts. After giving a brief overview of current and upcoming CMB lensing measurements, I will focus on two new ways of using CMB lensing, in combination with galaxy surveys, to constrain the early universe. First, I will explore how CMB lensing and galaxy surveys could provide insights into current discrepancies in measurements of the Hubble constant.
The axion solution to the strong CP problem also provides a natural dark matter candidate. If the Peccei-Quinn symmetry has ever been restored after inflation, topological defects of the axion field would have formed and produced relic axions, whose abundance is in principle calculable. We study the contribution to the abundance produced by string defects during the so-called scaling regime. Clear evidence of scaling violations is found, the most conservative extrapolation of which strongly suggests a large number of axions from strings.
The computation of transition amplitudes in Loop Quantum Gravity is still a hard task, especially without resorting to large-spins approximations. In Marseille we are actively developing a C library (sl2cfoam) to compute Lorentzian EPRL amplitudes with many vertices. We have already applied this tool to obtain interesting results in spinfoam cosmology and on the so-called flatness problem of spinfoam models.
Most massive stars spend their lives in so close orbit with a companion star that severe mass exchange or even coalescence is inevitable as the stars evolve and swell. A third of massive stars are thus stripped of their fluffy, hydrogen-rich envelopes, leaving the compact helium core exposed. These stripped stars are so hot that most of their radiation is emitted in the ionizing regime.