
Entropy for Gaussian states

The aim of this problem is to obtain the formula for entropy of bosonic Gaussian states in terms
of correlators. Gaussian states arise naturaly as fundamental states or thermal equilibrium states for
quadratic bosonic or fermionic Hamiltonians. For Bosonic systems the Hilbert space is infinite dimen-
sional, while for N fermions the dimension is 2N . However, in both cases you will find the entropy is
given in terms of eigenvalues of a N × N matrix. This simplification is due to the particularly simple
structure of correlators for these states.

Let the Hermitian operators φi and πj (coordinate and conjugate momentum bosonic operators) obey
the canonical commutation relations

[φi, πj ] = iδij , [φi, φj ] = [πi, πj ] = 0 . (1)

This forms a canonical commutation algebra. A Gaussian state is a state such that all non-zero correlators
are obtained from the two point correlators by the prescription

〈f1f2...f2k〉 =
1

2kk!

∑
σ

〈
Ofσ(1)fσ(2)

〉
...
〈
Ofσ(2k−1)fσ(2k)

〉
, (2)

where the sum is over all the permutations σ of the indices, the fi can be any of the field or momentum
variables, and O means the ordering of the operators in the two point correlators has to be the same
as the ordering they have in the left hand side of the equation. More simply, a state is Gaussian if a
2n-point correlator is a sum over all possible products of two point correlators that can be formed with
the 2n operators, each of these products taken with multiplicity one, and mantaining the ordering of the
variables. For example

〈f1f2f3f4〉 = 〈f1f2〉〈f3f4〉+ 〈f1f3〉〈f2f4〉+ 〈f1f4〉〈f2f3〉 . (3)

We are assuming that 〈φ〉 = 〈π〉 = 0, and expectation values of products of an odd number of canonical
variables vanish as well1. A Gaussian state is also called “free” or “quasifree”, and the property (2) is
a consequence of Wick’s theorem for vacuum state of free fields. As we will see a Gaussian state can be
pure or mixed.

a) Convince yourself this property is compatible with the numerical commutation relations for the canon-
ical variables. Convince yourself that if the state is Gaussian for the 2N operators φi, πi, it will be also
Gaussian for arbitrary linear combinations of these operators.

b) The two point functions can be written as

〈φiφj〉 = Xij , 〈πiπj〉 = Pij , (4)

〈φiπj〉 = 〈πjφi〉∗ =
i

2
δij +Dij , (5)

Show X and P are real, Hermitian, positive definite, and D is real. From now on we will restrict
attention to this case with Dij = 0 (this corresponds to time inversion symmetry of the state).

c) By definition the reduced density matrix is the unique matrix that satisfies

〈O〉 = tr(ρO) , (6)

for any operator O, that is, any function of φi, πi, which we can think can be approximated by polynomials
in these variables. Hence, the reduced density matrix must be such that expectation values give the right
two point functions and Wick’s theorem for the canonical variables.

Propose the following anzats for the reduced density matrix

ρ = Ke−H = K e−Σεla
†
l al , (7)

1The case of non vanishing one point functions is a simple generalization.
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in terms of independent creation and annihilation operators

[ai, a
†
j ] = δij , (8)

which are expressed as (at this moment undetermined) linear combinations of the φi and πj ,

φi = αija
†
j + αijaj , (9)

πi = −iβija†j + iβijaj . (10)

Here α and β are real matrices. General linear transformations of bosonic operators are called Bogoliubov
transformations.

Note that (7) gives the reduced density matrices as a product of independent density matrices for
oscillators with mode annihilation operators ai, and that the state on each of these independent modes is
a thermal state for a harmonic oscillator. Compute the normalization constant K. What is the spectrum
of this density matrix? Compute the entropy of the density matrix (7) in terms of the εk.

d) As a first step in showing the anzats (7) gives the correct state, argue that this state satisfies Wick’s

theorem for the operators ai, a
†
j . Then use the fact that if Wick’s theorem holds for certain variables it

will hold for linear combinations of the variables. In this way we know that the state (7) satisfies Wick’s
theorem for the original φi, πj variables. It only remain to choose the Bogoliubov transformation such
that the two point correlators match.

e) Show that in order that transformations (9), (10) satisfy the canonical commutation relations we have

αβT = −1

2
. (11)

f) Compute the two point correlation functions from (6), using tr(ρφiφj) = Xij , tr(ρπiπj) = Pij , to
obtain the matrix equations

α(2n+ 1)αT = X , (12)

β(2n+ 1)βT = P , (13)

where n is the diagonal matrix of the expectation value of the occupation number

nkk =
〈
a†kak

〉
= (eεk − 1)−1 . (14)

g) These equations give

α
1

4
(2n+ 1)2α−1 = XP . (15)

This last equation gives the spectrum εk of the independent oscillators in terms of the spectrum of XP ,

(1/2) coth(εk/2) = νk , (16)

where νk are the (positive) eigenvalues of

C =
√
XP . (17)

Using this relation between eigenvalues, rewrite the entropy in terms of the matric C as:

S = tr ((C + 1/2) log(C + 1/2)− (C − 1/2) log(C − 1/2)) . (18)

This is the expression we were looking for. What is the analogous expression for the Renyi entropies?
You can also compute the modular Hamiltonian in terms of X and P .

h) The expression (18) for the entropy requires the eigenvalues of C to be greater than 1/2 or the
eigenvalues of X.P are greater than 1/4. Can you explain why this inequality for the correlators is always
true? If the state is pure derive a relation the correlators X and P have to satisfy.
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i) The fundamental state (vacuum) of a quadratic Hamiltonian of the form

H =
1

2

∑
π2
i +

1

2

∑
ij

φiKijφj , (19)

is a Gaussian state2. Show the two point correlators are given by

Xij = 〈φiφj〉 =
1

2
(K−

1
2 )ij , (20)

Pij = 〈πiπj〉 =
1

2
(K

1
2 )ij , (21)

Dij = 0 . (22)

Now, if we want to study the vacuum state reduced to a subset V (a “region”) of degrees of freedom
given by some pairs φi, πi, i ∈ V , of the original variables, it is an inmediate observation that the reduced
state will continue to be Gaussian for the correlators restricted to V . Hence, we can use the correlators
(20) and (21), but with matrix indices restricted to V , and compute the entropy with formula (18) using
these restricted matrices. Note that the only information that we need is the Hamiltonian (the matrix
K). What is the entropy for the global fundamental state according to (18) and (20), (21)?

A similar calculation can be done for fermion Gaussian states. See the original reference I. Peschel, J.
Phys. A: Math. Gen. 36, L205 (2003), arXiv:cond-mat/0212631, or the review H. Casini, M. Huerta,
J.Phys. A42 (2009) 504007, arXiv:0905.2562. See H. Casini, M. Huerta, Phys.Rev. D93 (2016) 105031,
arXiv:1406.2991, for Gaussian gauge fields. The method can also be applied to other, non vacuum,
Gaussian states, such as thermal states or states with chemical potential for free fermions or bosons, and
some states in curved space for non interacting fields. Note that there are many states for a free theory
that are not Gaussian.

2You can think the vacuum state is the zero temperature limit of the thermal state. A thermal state is an exponential
of the Hamiltonian, and you have shown that states which are exponentials of quadratic operators are Gaussian.
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