- Home »
- JT gravity at finite cutoff

COVID-19 information for PI Residents and Visitors

We compute the partition function of 2D Jackiw-Teitelboim (JT) gravity at finite cutoff in two ways: (i) via an exact evaluation of the Wheeler-DeWitt wave-functional in radial quantization and (ii) through a direct computation of the Euclidean path integral. Both methods deal with Dirichlet boundary conditions for the metric and the dilaton. In the first approach, the radial wavefunctionals are found by reducing the constraint equations to two first order functional derivative equations that can be solved exactly, including factor ordering. In the second approach we perform the path integral exactly when summing over surfaces with disk topology, to all orders in perturbation theory in the cutoff. Both results precisely match the recently derived partition function in the Schwarzian theory deformed by an operator analogous to the TT¯ deformation in 2D CFTs. This equality can be seen as concrete evidence for the proposed holographic interpretation of the TT¯ deformation as the movement of the AdS boundary to a finite radial distance in the bulk.

COVID-19 information for PI Residents and Visitors

Collection/Series:

Event Type:

Seminar

Scientific Area(s):

Speaker(s):

Event Date:

Tuesday, May 5, 2020 - 14:30 to 16:00

Location:

Space Room

Room #:

400

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics